Oncotarget

Research Papers:

A novel immune resistance mechanism of melanoma cells controlled by the ADAR1 enzyme

Gilli Galore-Haskel _, Yael Nemlich, Eyal Greenberg, Shira Ashkenazi, Motti Hakim, Orit Itzhaki, Noa Shoshani, Ronnie Shapira-Fromer, Eytan Ben-Ami, Efrat Ofek, Liat Anafi, Michal J. Besser, Jacob Schachter and Gal Markel

PDF  |  HTML  |  Supplementary Files  |  How to cite  |  Order a Reprint

Oncotarget. 2015; 6:28999-29015. https://doi.org/10.18632/oncotarget.4905

Metrics: PDF 1216 views  |   HTML 1460 views  |   ?  


Abstract

Gilli Galore-Haskel1,4, Yael Nemlich1, Eyal Greenberg1,4, Shira Ashkenazi1,4, Motti Hakim5, Orit Itzhaki1, Noa Shoshani1, Ronnie Shapira-Fromer1, Eytan Ben-Ami1, Efrat Ofek2, Liat Anafi2, Michal J. Besser1,4, Jacob Schachter1,*, Gal Markel1,3,4,*

1Ella Lemelbaum Institute of Melanoma, Sheba Medical Center, Israel

2Institute of Pathology, Sheba Medical Center, Israel

3Talpiot Medical Leadership Program, Sheba Medical Center, Israel

4Department of Clinical Microbiology and Immunology, Tel Aviv University, Tel Aviv, Israel

5cCAM Biotherapeutics, Misgav Industrial Park, Misgav, Israel

*These authors have contributed equally to this work

Correspondence to:

Gal Markel, e-mail: markel@post.tau.ac.il

Keywords: melanoma, immune resistance, microRNA, ADAR1, ICAM1

Received: May 19, 2015     Accepted: August 10, 2015     Published: August 21, 2015

ABSTRACT

The blossom of immunotherapy in melanoma highlights the need to delineate mechanisms of immune resistance. Recently, we have demonstrated that the RNA editing protein, adenosine deaminase acting on RNA-1 (ADAR1) is down-regulated during metastatic transition of melanoma, which enhances melanoma cell proliferation and tumorigenicity. Here we investigate the role of ADAR1 in melanoma immune resistance.

Importantly, knockdown of ADAR1 in human melanoma cells induces resistance to tumor infiltrating lymphocytes in a cell contact-dependent mechanism. We show that ADAR1, in an editing-independent manner, regulates the biogenesis of miR-222 at the transcription level and thereby Intercellular Adhesion Molecule 1 (ICAM1) expression, which consequently affects melanoma immune resistance. ADAR1 thus has a novel, pivotal, role in cancer immune resistance. Corroborating with these results, the expression of miR-222 in melanoma tissue specimens was significantly higher in patients who had no clinical benefit from treatment with ipilimumab as compared to patients that responded clinically, suggesting that miR-222 could function as a biomarker for the prediction of response to ipilimumab.

These results provide not only novel insights on melanoma immune resistance, but also pave the way to the development of innovative personalized tools to enable optimal drug selection and treatment.


Creative Commons License All site content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 License.
PII: 4905