Oncotarget

Research Papers:

TAK1-inhibitors are cytotoxic for multiple myeloma cells alone and in combination with melphalan

Erling Håland, Ingrid Nyhus Moen, Elias Veidal, Hanne Hella, Kristine Misund, Tobias S. Slørdahl and Kristian K. Starheim _

PDF  |  Full Text  |  Supplementary Files  |  How to cite  |  Press Release

Oncotarget. 2021; 12:2158-2168. https://doi.org/10.18632/oncotarget.28073

Metrics: PDF 1394 views  |   Full Text 4311 views  |   ?  


Abstract

Erling Håland1,2, Ingrid Nyhus Moen1,2,3, Elias Veidal1,2, Hanne Hella2, Kristine Misund2, Tobias S. Slørdahl2,3 and Kristian K. Starheim1,2,3

1 CEMIR Centre of Molecular Inflammation Research, IKOM, NTNU, Trondheim, Norway

2 Department of Clinical and Molecular Medicine, NTNU, Trondheim, Norway

3 Department of Hematology, St. Olavs University Hospital, Trondheim, Norway

Correspondence to:

Kristian K. Starheim, email: [email protected]

Keywords: multiple myeloma; TAK1; apoptosis; NF-κB; cancer treatment

Received: July 30, 2021     Accepted: August 31, 2021     Published: October 12, 2021

Copyright: © 2021 Håland et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

ABSTRACT

Multiple myeloma (MM) is an incurable cancer caused by malignant transformation of plasma cells. Transforming growth factor-β activated kinase 1 (MAP3K7, TAK1) is a major regulator of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and mitogen-activated protein kinase (MAPK) signaling. Both NF-κB and MAPK control expression of genes with vital roles for drug resistance in MM. TAK1 is an attractive drug target as it switches these survival pathways to cell death. Our analysis showed that patients with high MAP3K7 expression in the tumor had shorter overall and progression free survival. The TAK1-inhibitors NG25 and 5Z-7-oxozeaenol (5Z-7) were cytotoxic to MM cell lines and patient cells. NG25 reduced expression of MYC and E2F controlled genes, involved in tumor cell growth, cell cycle progression and drug resilience. TAK1 can be activated by genotoxic stress. NG25 and 5Z-7 induced both synergistic and additive cytotoxicity in combination with the alkylating agent melphalan. Melphalan activated TAK1, NF-κB, and the MAPKs p38 and c-Jun N-terminal kinase (JNK), as well as a transcriptional UV-response. This was blocked by NG25, and instead apoptosis was activated. MM induce elevated bone-degradation resulting in myeloma bone disease (MBD), which is the main cause of disability and morbidity in MM patients. NG25 and 5Z-7 reduced differentiation and viability of human bone degrading osteoclasts, suggesting that TAK1-inhibition can have a double beneficial effect for patients. In sum, TAK1 is a promising drug target for MM treatment.


Creative Commons License All site content, except where otherwise noted, is licensed under a Creative Commons Attribution 4.0 License.
PII: 28073