Research Papers:

Recurrent somatic mutations of PRKAR1A in isolated cardiac myxoma

Jian He, Mingju Sun, Enyou Li, Yingyong Hou, Matthew J. Shepard, Di Chen, Karel Pacak, Changsong Wang, Lei Guo, Zhengping Zhuang _ and Yang Liu

PDF  |  HTML  |  Supplementary Files  |  How to cite

Oncotarget. 2017; 8:103968-103974. https://doi.org/10.18632/oncotarget.21916

Metrics: PDF 1318 views  |   HTML 1869 views  |   ?  


Jian He1,*, Mingju Sun1,*, Enyou Li2,*, Yingyong Hou5,*, Matthew J. Shepard3,6, Di Chen1, Karel Pacak7, Changsong Wang4, Lei Guo2, Zhengping Zhuang3 and Yang Liu1

1Scientific Research Center for Translational Medicine, Department of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China

2Department of Anesthesiology, First Affiliated Hospital of Harbin Medical University, Harbin, China

3Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland

4Department of Critical Care Medicine, The Third Affiliated Hospital of Harbin Medical University, Nangang District, Harbin, China

5Department of Pathology, School of Basic Medical Sciences & Zhongshan Hospital, Fudan University, Shanghai, China

6Department of Neurologic Surgery, University of Virginia Health System, Charlottesville, Virginia, USA

7Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA

*These authors have contributed equally to this work

Correspondence to:

Zhengping Zhuang, email: [email protected]

Yang Liu, email: [email protected]

Keywords: cardiac myxomas; PRKAR1A; somatic mutation

Received: July 14, 2017    Accepted: September 20, 2017    Published: October 19, 2017


Background: Cardiac myxomas are benign tumors that commonly arise within the left atria. Familial cardiac myxomas are a part of Carney Complex (CNC), an autosomal dominant multiple neoplasia syndrome caused by germline mutations in PRKAR1A. Seven percent of cardiac myxomas are associated with CNC. To date, the genetic basis of isolated cardiac myxomas (ICM), however, has not been fully elucidated.

Methods: We investigated the genetic profile of ICM using whole exome sequencing (WES). Suspected mutations were confirmed using targeted sanger sequencing. To further examine the presence of PRKAR1A mutations in ICM, we performed targeted sequencing in an additional 61 ICM specimens.

Results: 87.5% (7/8) of ICM harbored mutations in PRKAR1A. Three of the 8 ICM harbored biallelic somatic mutations of PRKAR1A, including c.607_610del:p.Leu203fs (pathogenic) + c.C896G:p.Ser299X (pathogenic), c.952delT:p.Leu318fs (pathogenic) + c.769-2 A>G (pathogenic) and c.178-1 G>C (pathogenic) + c. 550+1 G>C (pathogenic). Four of 8 tumors harbored monoallelic PRKAR1A mutations, including c.523_524insG:p.Tyr175_Val176delinsX (pathogenic), c.C920A:p.Ser307X (pathogenic), c.30delG:p.Glu10fs (pathogenic) and c.C289T:p.Arg97X (pathogenic). No identical variants were observed across the 8 ICM samples. Interestingly, none of these variants have been previously described in familial cardiac myxomas. In order to confirm our findings, directed sequencing of 61 ICM specimens was subsequently performed. Sixty-four percent (39/61) of ICMs tumors contained inactivating PRKAR1A mutations.

Conclusion: Our findings suggest that loss-of-function mutations of PRKAR1A may play a vital role in the formation of isolated cardiac myxomas.

Creative Commons License All site content, except where otherwise noted, is licensed under a Creative Commons Attribution 4.0 License.
PII: 21916