Research Papers:

IL-6R/STAT3/miR-204 feedback loop contributes to cisplatin resistance of epithelial ovarian cancer cells

Xiaolan Zhu, Huiling Shen, Xinming Yin, Lulu Long, Xiaofang Chen, Fan Feng, Yueqin Liu, Peiqing Zhao, Yue Xu, Mei Li, Wenlin Xu _ and Yuefeng Li

PDF  |  HTML  |  Supplementary Files  |  How to cite

Oncotarget. 2017; 8:39154-39166. https://doi.org/10.18632/oncotarget.16610

Metrics: PDF 2309 views  |   HTML 2757 views  |   ?  


Xiaolan Zhu1,2,*, Huiling Shen2,3,*, Xinming Yin1, Lulu Long3, Xiaofang Chen1, Fan Feng1, Yueqin Liu1, Peiqing Zhao2, Yue Xu1, Mei Li4, Wenlin Xu1 and Yuefeng Li4

1Department of Gynecologic Oncology, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China

2Jiangsu University, Medical School, Zhenjiang, Jiangsu 212003, China

3Department of Oncology, The Affiliated People Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China

4Department of Radiology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China

*These authors are considered as co-first authors

Correspondence to:

Wenlin Xu, email: [email protected]

Yuefeng Li, email: [email protected]

Keywords: miR-204, IL-6R, STAT3, chemoresistance, EOC

Received: January 23, 2017     Accepted: March 02, 2017     Published: March 27, 2017


Enhanced chemoresistance is, among other factors, believed to be responsible for treatment failure and tumor relapse in patients with epithelial ovarian cancer (EOC). Here, we exposed EOC cells to interleukin-6 (IL-6) to activate oncogenic STAT3, which directly repressed miR-204 via a conserved STAT3-binding site near the TRPM3 promoter region upstream of miR-204. Repression of miR-204 was required for IL-6-induced cisplatin (cDDP) resistance. Furthermore, we identified the IL-6 receptor (IL-6R), which mediates IL-6-dependent STAT3 activation, as a direct miR-204 target. Importantly, the resulting IL-6R/STAT3/miR-204 feedback loop was identified in patients with EOC, and its activity correlated with chemosensitivity. Moreover, exogenous miR-204 blocked this circuit and enhanced cDDP sensitivity both in vitro and in vivo by inactivating IL-6R/STAT3 signaling and subsequently decreasing the expression of anti-apoptotic proteins. Our findings illustrate the function of this feedback loop in cDDP-based therapy and may offer a broadly useful approach to improve EOC therapy.

Creative Commons License All site content, except where otherwise noted, is licensed under a Creative Commons Attribution 4.0 License.
PII: 16610