Oncotarget

Priority Research Papers:

Rad52 deficiency decreases development of lung squamous cell carcinomas by enhancing immuno-surveillance

Rachel Lieberman, Jing Pan, Qi Zhang and Ming You _

PDF  |  HTML  |  How to cite  |  Order a Reprint

Oncotarget. 2017; 8:34032-34044. https://doi.org/10.18632/oncotarget.16371

Metrics: PDF 1248 views  |   HTML 2021 views  |   ?  


Abstract

Rachel Lieberman1,2, Jing Pan1,2, Qi Zhang1,2 and Ming You1,2

1 Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA

2 Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA

Correspondence to:

Ming You, email:

Keywords: Rad52, DDR (DNA damage response), lung cancer, SCC (squamous cell carcinoma), HR (homologous recombination)

Received: January 30, 2017 Accepted: March 04, 2017 Published: March 18, 2017

Abstract

RAD52 is involved in homologous recombination and DNA repair. This study focuses on lung cancer progression and how the DNA repair gene, Rad52, enables tumor cells to have sufficient genome integrity, i.e., the ability to repair lethal DNA damage, to avoid cell death. In this report, we analyze the phenotypic differences between wild type and Rad52-/- in inhibition of tumor phenotypes including cell growth, viability, cytolysis, and immune profiling. We demonstrated that loss of Rad52 not only increases the death of cells undergoing carcinogen-induced transformation in vivo, but that Rad52 loss also augments in vivo antitumor activity through an enhanced capacity for direct killing of LLC tumor cells by stimulated Rad52-/- NK and CD8+ T cells. We hypothesize that upon DNA damage, wild type cells attempt to repair DNA lesions, but those cells that survive will continue to divide with damage and a high likelihood of progressing to malignancy. Loss of Rad52, however, appears to increase genomic instability beyond a manageable threshold, acceding the damaged cells to death before they are able to become tumor cells. Our results suggest a key role for the complex interplay between the DNA damage response and host immunity in determining risk for Squamous Cell Lung Carcinoma.


Creative Commons License All site content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 License.
PII: 16371