Oncotarget

Research Papers:

BET bromodomain inhibitors suppress EWS-FLI1-dependent transcription and the IGF1 autocrine mechanism in Ewing sarcoma

Sudan N. Loganathan, Nan Tang, Jonathan T. Fleming, Yufang Ma, Yan Guo, Scott C. Borinstein, Chin Chiang and Jialiang Wang _

PDF  |  HTML  |  Supplementary Files  |  How to cite  |  Order a Reprint

Oncotarget. 2016; 7:43504-43517. https://doi.org/10.18632/oncotarget.9762

Metrics: PDF 1201 views  |   HTML 1342 views  |   ?  


Abstract

Sudan N. Loganathan1,2, Nan Tang3, Jonathan T. Fleming4, Yufang Ma5, Yan Guo6, Scott C. Borinstein7, Chin Chiang4, Jialiang Wang1,2,5,6

1Department of Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN, USA

2Department of Pharmacology, Vanderbilt University, Nashville, TN, USA

3Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China

4Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA

5Department of Neurological Surgery, Vanderbilt University, Nashville, TN, USA

6Department of Cancer Biology, Vanderbilt University, Nashville, TN, USA

7Department of Pediatrics, Vanderbilt University, Nashville, TN, USA

Correspondence to:

Jialiang Wang, email: jialiang.wang@vanderbilt.edu

Keywords: BET bromodomain protein, Ewing sarcoma, EWS-FLI1, IGF1, BRD4

Received: February 19, 2016     Accepted: May 20, 2016     Published: June 01, 2016

ABSTRACT

Ewing sarcoma is driven by characteristic chromosomal translocations between the EWSR1 gene with genes encoding ETS family transcription factors (EWS-ETS), most commonly FLI1. However, direct pharmacological inhibition of transcription factors like EWS-FLI1 remains largely unsuccessful. Active gene transcription requires orchestrated actions of many epigenetic regulators, such as the bromodomain and extra-terminal domain (BET) family proteins. Emerging BET bromodomain inhibitors have exhibited promising antineoplastic activities via suppression of oncogenic transcription factors in various cancers. We reasoned that EWS-FLI1-mediated transcription activation might be susceptible to BET inhibition. In this study, we demonstrated that small molecule BET bromodomain inhibitors repressed EWS-FLI1-driven gene signatures and downregulated important target genes. However, expression of EWS-FLI1 was not significantly affected. Repression of autocrine IGF1 by BET inhibitors led to significant inhibition of the IGF1R/AKT pathway critical to Ewing sarcoma cell proliferation and survival. Consistently, BET inhibitors impaired viability and clonogenic survival of Ewing sarcoma cell lines and blocked EWS-FLI1-induced transformation of mouse NIH3T3 fibroblast cells. Selective depletion of individual BET genes partially phenocopied the actions of BET inhibitors. Finally, the prototypical BET inhibitor, JQ1, significantly repressed Ewing sarcoma xenograft tumor growth. These findings suggest therapeutic potential of BET inhibitors in Ewing sarcoma and highlight an emerging paradigm of using epigenetic agents to treat cancers driven by fusion transcription factors.


Creative Commons License All site content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 License.
PII: 9762