Research Papers: Pathology:

Dendritic and Langerhans cells respond to Aβ peptides differently: implication for AD immunotherapy

Jiang Cheng, Xiaoyang Lin, David Morgan, Marcia Gordon, Xi Chen, Zhen-Hai Wang, Hai-Ning Li, Lan-Jie He, Shu-Feng Zhou and Chuanhai Cao _

PDF  |  HTML  |  How to cite

Oncotarget. 2015; 6:35443-35457. https://doi.org/10.18632/oncotarget.6123

Metrics: PDF 1931 views  |   HTML 3176 views  |   ?  


Jiang Cheng1,2, Xiaoyang Lin2,3, David Morgan3,4, Marcia Gordon3,4, Xi Chen5, Zhen-Hai Wang1, Hai-Ning Li1, Lan-Jie He6, Shu-Feng Zhou2,7 and Chuanhai Cao2,3

1 Department of Neurology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China

2 Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA

3 USF-Health Byrd Alzheimer’s Institute University of South Florida, Tampa, FL, USA

4 Department of Molecular Pharmacology and Physiology University of South Florida, Tampa, FL, USA

5 Department of Colorectal Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China

6 Department of Endocrinology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China

7 Guizhou Provincial Key Laboratory for Regenerative Medicine, Stem Cell and Tissue Engineering Research Center & Sino-US Joint Laboratory for Medical Sciences, Guiyang Medical University, Guiyang, Guizhou, China

Correspondence to:

Chuanhai Cao, email:

Shufeng Zhou, email:

Keywords: dendritic cell, Langerhans cell, vaccine, amyloid beta peptide, T-cell epitope

Received: July 10, 2015 Accepted: September 08, 2015 Published: October 14, 2015


Both wild-type and mutated beta-amyloid (Aβ) peptides can elicit an immune response when delivered subcutaneously. However, only mutated forms of Aβ can sensitize dendritic cells when administered intravenously or intraperitoneally. To understand the role of mutation and delivery routes in creating immune responses, and the function of dendritic cells as therapeutic agents, we used fluorescent-conjugated WT Aβ1-40 (WT40) and artificially mutated Aβ1-40 (22W40) peptides to treat dendritic and Langerhans cells from young and/or old mice at different time points. The cell types were analyzed by flow cytometry and confocal microscopy to identify differences in function and antigen presentation, and Luminex and Western blots for cell activation and associated mechanisms. Our results demonstrated that the artificial mutant, 22W40, enhanced dendritic cell’s phagocytosis and antigen presentation better than the WT40. Interestingly, Langerhans cells were more effective at early presentation. The artificial mutant 22W40 increased CD8α+ dendritic cells, CD8+ T-cells, and IFN-γ production when co-cultured with self-lymphocytes and dendritic cells from aged mice (30-month-old). Here, the 22W40 mutant peptide has been found to be potent enough to activate DCs, and that dendritic cell-based therapy may be a more effective treatment for age-related diseases, such as Alzheimer’s disease (AD).

Creative Commons License All site content, except where otherwise noted, is licensed under a Creative Commons Attribution 4.0 License.
PII: 6123