Research Papers:

Chemogenetic profiling identifies RAD17 as synthetically lethal with checkpoint kinase inhibition

John Paul Shen, Rohith Srivas, Andrew Gross, Jianfeng Li, Eric J. Jaehnig, Su Ming Sun, Ana Bojorquez-Gomez, Katherine Licon, Vignesh Sivaganesh, Jia L. Xu, Kristin Klepper, Huwate Yeerna, Daniel Pekin, Chu Ping Qiu, Haico van Attikum, Robert W. Sobol and Trey Ideker _

PDF  |  HTML  |  Supplementary Files  |  How to cite

Oncotarget. 2015; 6:35755-35769. https://doi.org/10.18632/oncotarget.5928

Metrics: PDF 2498 views  |   HTML 2829 views  |   ?  


John Paul Shen1,2, Rohith Srivas1,8, Andrew Gross3, Jianfeng Li4,5,9, Eric J. Jaehnig1,6, Su Ming Sun7, Ana Bojorquez-Gomez1, Katherine Licon1, Vignesh Sivaganesh1, Jia L. Xu1, Kristin Klepper1, Huwate Yeerna1, Daniel Pekin1, Chu Ping Qiu1, Haico van Attikum7, Robert W. Sobol4,5,9 and Trey Ideker1,2,3

1 Department of Medicine, University of California San Diego, La Jolla, CA, USA

2 Moores Cancer Center, University of California San Diego, La Jolla, CA, USA

3 Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, USA

4 Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA

5 University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, PA, USA

6 Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA, USA

7 Department of Toxicogenetics, Leiden University Medical Center, Einthovenweg, Leiden, The Netherlands

8 Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA

9 University of South Alabama Mitchell Cancer Institute, Mobile, Alabama, USA

Correspondence to:

Trey Ideker, email:

Keywords: RAD17, synthetic lethal, checkpoint kinase inhibitor, biomarker, DNA damage

Received: June 08, 2015 Accepted: September 14, 2015 Published: September 30, 2015


Chemical inhibitors of the checkpoint kinases have shown promise in the treatment of cancer, yet their clinical utility may be limited by a lack of molecular biomarkers to identify specific patients most likely to respond to therapy. To this end, we screened 112 known tumor suppressor genes for synthetic lethal interactions with inhibitors of the CHEK1 and CHEK2 checkpoint kinases. We identified eight interactions, including the Replication Factor C (RFC)-related protein RAD17. Clonogenic assays in RAD17 knockdown cell lines identified a substantial shift in sensitivity to checkpoint kinase inhibition (3.5-fold) as compared to RAD17 wild-type. Additional evidence for this interaction was found in a large-scale functional shRNA screen of over 100 genotyped cancer cell lines, in which CHEK1/2 mutant cell lines were unexpectedly sensitive to RAD17 knockdown. This interaction was widely conserved, as we found that RAD17 interacts strongly with checkpoint kinases in the budding yeast Saccharomyces cerevisiae. In the setting of RAD17 knockdown, CHEK1/2 inhibition was found to be synergistic with inhibition of WEE1, another pharmacologically relevant checkpoint kinase. Accumulation of the DNA damage marker γH2AX following chemical inhibition or transient knockdown of CHEK1, CHEK2 or WEE1 was magnified by knockdown of RAD17. Taken together, our data suggest that CHEK1 or WEE1 inhibitors are likely to have greater clinical efficacy in tumors with RAD17 loss-of-function.

Creative Commons License All site content, except where otherwise noted, is licensed under a Creative Commons Attribution 4.0 License.
PII: 5928