Research Papers:

Role of miR-182 in response to oxidative stress in the cell fate of human fallopian tube epithelial cells

Yugang Liu _, Wenan Qiang, Xiaofei Xu, Ruifen Dong, Alison M. Karst, Zhaojian Liu, Beihua Kong, Ronny I. Drapkin and Jian-Jun Wei

PDF  |  HTML  |  Supplementary Files  |  How to cite

Oncotarget. 2015; 6:38983-38998. https://doi.org/10.18632/oncotarget.5493

Metrics: PDF 1512 views  |   HTML 2564 views  |   ?  


Yugang Liu1, Wenan Qiang1,2,3, Xiaofei Xu1, Ruifen Dong1, Alison M. Karst4, Zhaojian Liu1, Beihua Kong5, Ronny I. Drapkin4, Jian-Jun Wei1,2,3

1Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA

2Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA

3Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA

4The Division of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA

5Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, Shandong, China

Correspondence to:

Jian-Jun Wei, e-mail: [email protected]

Keywords: fallopian tube secretory cells, ROS-induced miRNA (ROSmiR), p53, senescence bypass, tumorigenesis

Received: June 20, 2015     Accepted: September 29, 2015     Published: October 12, 2015


High grade serous ovarian carcinoma (HGSC) is a DNA instable tumor and its precursor is commonly found originating from the fimbriated end of the fallopian tube secretory epithelial (FTSE) cells. The local stresses via ovulation and related inflammation are risks for HGSC. In this study, we examined the cellular and molecular responses of FTSE cells to stress. We found that excess intracellular reactive oxygen species (ROS) in normal FTSE cells upregulated a subset of microRNA expression (defined as ROSmiRs). Most ROSmiRs’ expression and function were influenced and regulated by p53, and together they drove the cells into stress-induced premature senescence (SIPS). However, ROS-induced miR-182 is regulated by β-catenin, not by p53. In normal FTSE cells, miR-182 overexpression triggers cellular senescence by p53-mediated upregulation of p21. Conversely, in cells with p53 mutations, miR-182 overexpression no longer enhances p21 but functions as an “Onco-miR”. p53 dysfunction is a prerequisite for miR-182-mediated tumorigenesis. In addition, we found that human follicular fluid could significantly induce intracellular ROS in normal FTSE cells. These findings suggest that ROS and p53 mutations may trigger a series of events, beginning with overexpressing miR-182 by ROS and β-catenin, impairing the DNA damage response, promoting DNA instability, bypassing senescence and eventually leading to DNA instable tumors in FTSE cells.

Creative Commons License All site content, except where otherwise noted, is licensed under a Creative Commons Attribution 4.0 License.
PII: 5493