Oncotarget

Reviews:

Patient-derived tumor models are attractive tools to repurpose drugs for ovarian cancer treatment: pre-clinical updates

Magdalena Cybula _ and Magdalena Bieniasz

PDF  |  Full Text  |  How to cite

Oncotarget. 2022; 13:553-575. https://doi.org/10.18632/oncotarget.28220

Metrics: PDF 1330 views  |   Full Text 2589 views  |   ?  


Abstract

Magdalena Cybula1 and Magdalena Bieniasz1

1 Oklahoma Medical Research Foundation, Aging and Metabolism Research Program, Oklahoma City, OK 73104, USA

Correspondence to:

Magdalena Cybula, email: [email protected]

Keywords: PDX; ovarian cancer; repurposed drugs; tumor models

Received: January 12, 2022     Accepted: March 08, 2022     Published: March 24, 2022

Copyright: © 2022 Cybula and Bieniasz. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

ABSTRACT

Despite advances in understanding of ovarian cancer biology, the progress in translation of research findings into new therapies is still slow. It is associated in part with limitations of commonly used cancer models such as cell lines and genetically engineered mouse models that lack proper representation of diversity and complexity of actual human tumors. In addition, the development of de novo anticancer drugs is a lengthy and expensive process. A promising alternative to new drug development is repurposing existing FDA-approved drugs without primary oncological purpose. These approved agents have known pharmacokinetics, pharmacodynamics, and toxicology and could be approved as anticancer drugs quicker and at lower cost. To successfully translate repurposed drugs to clinical application, an intermediate step of pre-clinical animal studies is required. To address challenges associated with reliability of tumor models for pre-clinical studies, there has been an increase in development of patient-derived xenografts (PDXs), which retain key characteristics of the original patient’s tumor, including histologic, biologic, and genetic features. The expansion and utilization of clinically and molecularly annotated PDX models derived from different ovarian cancer subtypes could substantially aid development of new therapies or rapid approval of repurposed drugs to improve treatment options for ovarian cancer patients.


Creative Commons License All site content, except where otherwise noted, is licensed under a Creative Commons Attribution 4.0 License.
PII: 28220