Oncotarget

Research Papers:

Synthesis of a novel nanobioconjugate for targeted photodynamic therapy of colon cancer enhanced with cannabidiol

Nkune Williams Nkune, Cherie Ann Kruger _ and Heidi Abrahamse

PDF  |  Full Text  |  How to cite  |  Order a Reprint

Oncotarget. 2022; 13:156-172. https://doi.org/10.18632/oncotarget.28171

Metrics: PDF 310 views  |   Full Text 1584 views  |   ?  


Abstract

Nkune Williams Nkune1, Cherie Ann Kruger1 and Heidi Abrahamse1

1 Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein 2028, South Africa

Correspondence to:

Cherie Ann Kruger, email: cherier@uj.ac.za

Keywords: cannabidiol; photodynamic therapy; colorectal cancer; nanoparticles; photosensitizer

Received: November 08, 2021     Accepted: December 20, 2021     Published: January 18, 2022

Copyright: © 2022 Nkune et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

ABSTRACT

Photodynamic therapy (PDT) is a promising primary treatment option for colorectal cancer (CRC), however CRC is accelerated by resilient CRC stem-like cells, which decrease its efficacy. In recent years, researchers have shown an emerging interest in the anticancer stem cell effects of cannabidiol (CBD). This study developed a targeted nanobioconjugate for specific ZnPcS4 photosensitizer intracellular accumulation within in vitro cultured human CRC cells (CaCo-2) for enhanced PDT primary treatment, as well as limited its secondary spread by combining this treatment with CBD. The final nanobioconjugate (FNBC) was successfully synthesized and characterized using various methods. The cytotoxicity of the FNBC and CBD were tested on CRC cells using laser irradiation at 673 nm with a fluency of 10 J/cm2. 24 h post treatment, morphological changes were assessed via microscopy, cell viability was measured using Annexin V-FITC and cellular nuclear DNA was visualized under fluorescent microscopy, following Hoechst staining. FNBC and CBD combinative treatment induced the most significant photodamage, leaving a staggering 6%*** viable cells. Overall, through active targeting of CRC cells using the FNBC, the enhanced PDT primary treatment of CRC was achieved, and the combinative treatment with CBD noted significant limitations on its secondary spread.


Creative Commons License All site content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 License.
PII: 28171