Research Papers:

This article has been corrected. Correction in: Oncotarget. 2021; 12:1734-1735.

Lung cancer stem cells and their aggressive progeny, controlled by EGFR/MIG6 inverse expression, dictate a novel NSCLC treatment approach

Zhiguang Xiao, Bianca Sperl, Silvia Gärtner, Tatiana Nedelko, Elvira Stacher-Priehse, Axel Ullrich and Pjotr G. Knyazev _

PDF  |  Full Text  |  Supplementary Files  |  How to cite

Oncotarget. 2019; 10:2546-2560. https://doi.org/10.18632/oncotarget.26817

Metrics: PDF 1402 views  |   Full Text 2878 views  |   ?  


Zhiguang Xiao1,2, Bianca Sperl1, Silvia Gärtner1, Tatiana Nedelko3, Elvira Stacher-Priehse4, Axel Ullrich1 and Pjotr G. Knyazev1,5

1Department of Molecular Biology, Max-Planck Institute of Biochemistry, Martinsried, Munich, 82152, Germany

2Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA

3Department of Medicine III, Klinikum rechts der Isar, TUM, Munich, 81675, Germany

4Asclepius Institute of Pathology, Gauting, 82131, Germany

5Current address: DoNatur GmbH, Martinsried, Munich, 82152, Germany

Correspondence to:

Pjotr G. Knyazev, email: [email protected]

Zhiguang Xiao, email: [email protected]

Keywords: NSCLC; cancer stem cells; niches; EGFR/MIG6; drug resistance

Received: January 29, 2019     Accepted: March 04, 2019     Published: April 02, 2019


The lung cancer stem cell (LuCSC) model comprises an attractive framework to explore acquired drug resistance in non-small cell lung cancer (NSCLC) treatment. Here, we used NSCLC cell line model to translate cellular heterogeneity into tractable populations to understand the origin of lung cancers and drug resistance. The epithelial LuCSCs, presumably arising from alveolar bipotent stem/progenitor cells, were lineage naïve, noninvasive, and prone to creating aggressive progeny expressing AT2/AT1 markers. LuCSC-holoclones were able to initiate rimmed niches, where their specialization created pseudo-alveoli structures. Mechanistically, LuCSC transitioning from self-renewal (β-catenin and Nanog signaling) to malignant lineage differentiation is regulated by EGFR activation and the inverse inhibition of tumor suppressor MIG6. We further identified the functional roles of endogenous EGFR signaling in mediating progeny invasiveness and their ligands in LuCSC differentiation. Importantly, drug screening demonstrated that EGFR driving progeny were strongly responsive to TKIs; however, the LuCSCs were exclusively resistant but sensitive to AMPK agonist Metformin, antibiotic Salinomycin and to a lesser degree Carboplatin. Our data reveals previously an unknown mechanism of NSCLC resistance to EGFR-TKIs, which is associated with LuCSCs bearing a silenced EGFR and inversely expressed MIG6 suppressor gene. Taken altogether, successful NSCLC treatment requires development of a novel combination of drugs, efficiently targeting both LuCSCs and heterogeneous progeny.

Creative Commons License All site content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 License.
PII: 26817