Oncotarget

Research Papers:

Zinc improves learning and memory abilities of fetal growth restriction rats and promotes trophoblast cell invasion and migration via enhancing STAT3-MMP-2/9 axis activity

Lu Zong, Xiaohua Wei, Wenli Gou, Pu Huang and Ye Lv _

PDF  |  HTML  |  How to cite  |  Order a Reprint

Oncotarget. 2017; 8:115190-115201. https://doi.org/10.18632/oncotarget.23122

Metrics: PDF 555 views  |   HTML 1172 views  |   ?  


Abstract

Lu Zong1, Xiaohua Wei1, Wenli Gou1, Pu Huang1 and Ye Lv2

1Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China

2Department of Behavioral Pediatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China

Correspondence to:

Ye Lv, email: lvye698@163.com

Lu Zong, email: zong_lu@yeah.net

Keywords: fetal growth restriction; learning and memory abilities; zinc; trophoblast; matrix metalloproteinase-2/9

Received: September 15, 2017     Accepted: November 16, 2017     Published: December 09, 2017

ABSTRACT

Fetal growth restriction (FGR) is a well-known risk factor for cognitive dysfunction, especially for learning and memory abilities. However, knowledge about prevention and treatment methods of learning and memory abilities of fetal are limit. Here, Morris water maze and passive avoidance tests showed zinc supplementation could protect the impairment of the learning and memory abilities caused by FGR. As accumulating evidence suggested that insufficiency of placental trophoblast cell invasion was closely related to FGR fetal neurodevelopmental dysplasia, we further explored the relationship between zinc supplementation during pregnancy and placental trophoblast. Microarray identified 346 differently expressed genes in placental tissues with and without zinc supplementation, and GO and KEGG analyses showed these differently expressed genes were highly enriched in cell invasion and migration and STAT3 pathway. Protein-protein interaction(PPI) analysis found that STAT3 interacted with matrix metalloproteinase-2/9 (MMP-2/9). In vivo, western blot results authenticated that the expression levels of phospho-STAT3, STAT3, MMP-2 and MMP-9 were up-regulated in placental tissues after zinc treatment. To validate whether zinc could promotes trophoblast cell invasion and migration via enhancing STAT3-MMP-2/9 activity. In vitro, Transwell assay was performed, and we observed that abilities of invasion and migration were obviously increased in zinc treated trophoblast cells. And phospho-STAT3, STAT3, MMP-2 and MMP-9 expression levels were correspondingly increased in zinc treated trophoblast cells, which were dose-dependent. Moreover, gain–of-function and loss-of-function of STAT3 confirmed that zinc promotes cell invasion and migration via regulating STAT3 mediated up-regulation of MMP-2/9 activity. We propose that activation of MMP-2/9 mediated by STAT3 may contribute to invasion and migration of trophoblast cells, which improved neurodevelopmental impairment of FGR rats probably via contributing to placental development. Our findings are the first to show a possible mechanism of reversing neurodevelopmental impairment of FGR rats by zinc supplementation, holding promise for the development of novel therapeutic modalities for learning and memory abilities impairment caused by FGR.


Creative Commons License All site content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 License.
PII: 23122