Research Papers:

Functional imaging in combination with mutation status aids prediction of response to inhibiting B-cell receptor signaling in lymphoma

Laura Jacobs, Stefan Habringer, Jolanta Slawska, Katharina Huber, Elke Hauf, Zhoulei Li, Yosef Refaeli, Markus Schwaiger, Martina Rudelius, Axel Walch and Ulrich Keller _

PDF  |  HTML  |  How to cite

Oncotarget. 2017; 8:78917-78929. https://doi.org/10.18632/oncotarget.20551

Metrics: PDF 1698 views  |   HTML 2414 views  |   ?  


Laura Jacobs1,*, Stefan Habringer2,6,*, Jolanta Slawska2, Katharina Huber3, Elke Hauf2, Zhoulei Li1, Yosef Refaeli4, Markus Schwaiger1,6, Martina Rudelius5, Axel Walch3 and Ulrich Keller2,6

1Nuclear Medicine Department, Technische Universität München, Munich, Germany

2Internal Medicine III, Technische Universität München, Munich, Germany

3Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany

4Department of Dermatology, University of Colorado, Denver, CO, USA

5Department of Pathology, Universitätsklinikum Düsseldorf, Düsseldorf, Germany

6German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany

*Authors contributed equally to this work

Correspondence to:

Ulrich Keller, email: [email protected]

Keywords: lymphoma, B-cell receptor signaling, positron emission tomography, MALDI imaging mass spectrometry, functional imaging

Received: April 28, 2017    Accepted: July 31, 2017    Published: August 24, 2017


Aberrant B-cell receptor (BCR) signaling is known to contribute to malignant transformation. Two small molecule inhibitors targeting BCR pathway signaling include ibrutinib, a Bruton’s tyrosine kinase (BTK) inhibitor, and idelalisib, a specific Phosphatidylinositol-4,5-bisphosphate 3-kinase delta (PI3Kδ) inhibitor, both of which have been approved for use in haematological malignancies. Despite the identification of various diffuse large B-cell lymphoma (DLBCL) subtypes, mutation status alone is not sufficient to predict patient response and therapeutic resistance can arise. Herein we apply early molecular imaging across alternative activated B-cell (ABC) and germinal center B-cell (GCB) DLBCL subtypes to investigate the effects of BCR pathway inhibition. Treatment with both inhibitors adversely affected cell growth and viability. These effects were partially predictable based upon mutation status. Accordingly, very early 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography (18F-FDG-PET) and 3’-deoxy-3’[18F]-fluorothymidine positron emission tomography (18F-FLT-PET) reported tumour regression and reductions in tumour metabolism and proliferation upon treatment. Furthermore, matrix-assisted laser desorption ionization imaging mass spectrometry (MALDI IMS) identified alterations in the proteome of a model of ABC DLBCL upon treatment with ibrutinib or idelalisib. In conclusion we demonstrate that very early molecular imaging adds predictive value in addition to mutational status of DLBCL that may be useful in directing patient therapy.

Creative Commons License All site content, except where otherwise noted, is licensed under a Creative Commons Attribution 4.0 License.
PII: 20551