Research Papers:

The synergistic antitumor effect of cinobufagin and cisplatin in human osteosarcoma cell line in vitro and in vivo

Guo Dai, Ling Yu, Jian Yang, Kezhou Xia, Zhengpei Zhang, Gaiwei Liu, Tian Gao and Weichun Guo _

PDF  |  HTML  |  How to cite

Oncotarget. 2017; 8:85150-85168. https://doi.org/10.18632/oncotarget.19554

Metrics: PDF 1726 views  |   HTML 3104 views  |   ?  


Guo Dai1,*, Ling Yu1,*, Jian Yang1, Kezhou Xia1, Zhengpei Zhang1, Gaiwei Liu1, Tian Gao2 and Weichun Guo1

1Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan 430060, P. R. China

2Department of Orthopedic Oncology, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Peking University Cancer Hospital & Institute, Beijing 100000, P. R. China

*These authors have contributed equally to this work

Correspondence to:

Weichun Guo, email: [email protected]

Keywords: cinobufagin, cisplatin, osteosarcoma, combined treatment, apoptosis

Received: February 21, 2017    Accepted: June 24, 2017    Published: July 25, 2017


Cisplatin (CDDP) has been shown to be a promising anticancer drug that is effective against many types of cancer, which include osteosarcoma (OS). However, its therapeutic application is restricted by its toxicity in normal tissues and by side effects caused in patients. Reduction of the toxicity of CDDP is necessary to improve cancer treatment. In the present study, we attempted to clarify how cinobufagin, a traditional Chinese medicine, enhances CDDP-induced cytotoxicity in OS cells. OS 143B cells were treated with cinobufagin and CDDP alone or in combination. After low dose combined treatments with cinobufagin and CDDP, the effects of these therapeutics on cell proliferation, apoptosis, cell cycle, migration, invasion, and involvement in Notch pathway, as well as tumor growth and metastatic capability were determined. It was found that the combination of low doses of cinobufagin and CDDP markedly inhibited cell activity, motility, and induced apoptosis and cell cycle arrest in S phase, as well as suppressing tumor growth, metastasis and prolonging longer survival of nude mice in OS xenograft models compared with the actions of either drug alone or vehicle. The results also demonstrated that cinobufagin plus CDDP significantly suppressed the Notch pathway. The anticancer mechanism of these two drugs may involve intervention in the Notch signaling, which may contribute to inhibit tumor growth. All of these results suggest that application of lower concentration cinobufagin plus CDDP could produce a synergistic antitumor effect and this finding warrants further investigation for its potential clinical applications in human OS patients.

Creative Commons License All site content, except where otherwise noted, is licensed under a Creative Commons Attribution 4.0 License.
PII: 19554