Oncotarget

Research Papers:

ROS-induced epithelial-mesenchymal transition in mammary epithelial cells is mediated by NF-κB-dependent activation of Snail

Magdalena A. Cichon and Derek C. Radisky _

PDF  |  HTML  |  Supplementary Files  |  How to cite  |  Order a Reprint

Oncotarget. 2014; 5:2827-2838. https://doi.org/10.18632/oncotarget.1940

Metrics: PDF 3566 views  |   HTML 3649 views  |   ?  


Abstract

Magdalena A. Cichon1 and Derek C. Radisky1

1 Mayo Clinic Cancer Center, 4500 San Pablo Road, Jacksonville, FL 32224, USA

Correspondence:

Derek C. Radisky, email:

Keywords: Epithelial-mesenchymal transition, matrix metalloproteinase-3, reactive oxygen species, nuclear factor-κB, Snail, breast cancer.

Received: April 18, 2014 Accepted: April 30, 2014 Published: May 1, 2014

Abstract

Epithelial-mesenchymal transition (EMT) is characterized by loss of cell-cell junctions, polarity and epithelial markers, and in turn, acquisition of mesenchymal features and motility. Changes associated with this developmental process have been extensively implicated in breast cancer progression and metastasis. Matrix metalloproteinases (MMPs) have been identified as specific inducers of EMT in mammary epithelial cells. MMP-3 induces EMT associated with malignant transformation via a pathway dependent upon production of reactive oxygen species (ROS). While the process by which exposure to MMP-3 leads to induction of ROS has been extensively studied, exactly how the MMP-3-induced ROS stimulate EMT remains unknown. Here, we used profiling methods to identify MMP-3-induced transcriptional alterations in mouse mammary epithelial cells, finding common overlap with changes mediated by nuclear factor-κB (NF-κB) and found in advanced breast cancer. In cultured cells, we found that Snail, an ROS-dependent key mediator of MMP-3-induced changes, is regulated by NF-κB in response to MMP-3. More specifically, we found MMP-3 to cause binding of p65 and cRel NF-κB subunits to the Snail promoter, leading to its transcription. Our results identify a specific pathway by which MMPs induce EMT and malignant characteristics, and provide insight into potential therapeutic approaches to target MMP-associated breast cancers.


Creative Commons License All site content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 License.
PII: 1940