Research Papers: Pathology:

This article is currently under investigation. We strongly recommend that this article is not cited until the investigation is completed.

Interferon gamma peptidomimetic targeted to interstitial myofibroblasts attenuates renal fibrosis after unilateral ureteral obstruction in mice

Fariba Poosti _, Ruchi Bansal, Saleh Yazdani, Jai Prakash, Leonie Beljaars, Jacob van den Born, Martin H. de Borst, Harry van Goor, Jan-Luuk Hillebrands and Klaas Poelstra

PDF  |  HTML  |  Supplementary Files  |  How to cite

Oncotarget. 2016; 7:54240-54252. https://doi.org/10.18632/oncotarget.11095

Metrics: PDF 2391 views  |   HTML 2884 views  |   ?  


Fariba Poosti1,5, Ruchi Bansal2, Saleh Yazdani2, Jai Prakash2, Leonie Beljaars3, Jacob van den Born4, Martin H. de Borst4, Harry van Goor1, Jan-Luuk Hillebrands1,* and Klaas Poelstra3,*

1 Department of Pathology and Medical Biology, Division of Pathology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands

2 Department of Biomaterials Science and Technology, Division of Targeted Therapeutics, MIRA Institute, University of Twente, Enschede, The Netherlands

3 Department of Pharmacokinetics, Toxicology and Targeting, University of Groningen, Groningen, The Netherlands

4 Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands

5 Department of Microbiology and Immunology, Laboratory of Molecular Immunology, Rega Institute, KU Leuven, Belgium

* Share senior authorship

Correspondence to:

Jan-Luuk Hillebrands, email:

Keywords: drug targeting, fibrosis, interferon gamma, kidney, myofibroblast, Pathology Section

Received: March 07, 2016 Accepted: June 20, 2016 Published: August 05, 2016


Renal fibrosis cannot be adequately treated since anti-fibrotic treatment is lacking. Interferon-γ is a pro-inflammatory cytokine with anti-fibrotic properties. Clinical use of interferon-γ is hampered due to inflammation-mediated systemic side effects. We used an interferon-γ peptidomimetic (mimγ) lacking the extracellular IFNγReceptor recognition domain, and coupled it to the PDGFβR-recognizing peptide BiPPB. Here we tested the efficacy of mimγ-BiPPB (referred to as “Fibroferon”) targeted to PDGFβR-overexpressing interstitial myofibroblasts to attenuate renal fibrosis without inducing inflammation-mediated side effects in the mouse unilateral ureter obstruction model.

Unilateral ureter obstruction induced renal fibrosis characterized by significantly increased α-SMA, TGFβ1, fibronectin, and collagens I and III protein and/or mRNA expression. Fibroferon treatment significantly reduced expression of these fibrotic markers. Compared to full-length IFNγ, anti-fibrotic effects of Fibroferon were more pronounced. Unilateral ureter obstruction-induced lymphangiogenesis was significantly reduced by Fibroferon but not full-length IFNγ. In contrast to full-length IFNγ, Fibroferon did not induce IFNγ-related side-effects as evidenced by preserved low-level brain MHC II expression (similar to vehicle), lowered plasma triglyceride levels, and improved weight gain after unilateral ureter obstruction.

In conclusion, compared to full-length IFNγ, the IFNγ-peptidomimetic Fibroferon targeted to PDGFβR-overexpressing myofibroblasts attenuates renal fibrosis in the absence of IFNγ-mediated adverse effects.

Creative Commons License All site content, except where otherwise noted, is licensed under a Creative Commons Attribution 4.0 License.
PII: 11095