Oncotarget

Research Papers: Pathology:

EPCs enhance angiogenesis in renal regeneration

Xin Wang, Yaling Yu, Miaozhong Li, Ali Alkhawaji, Chuan Chen, Xiaolin Liu, Junqun Jiang, Jianse Zhang, Zhibin Wang, Ting Li, Weiwen Zhang and Jin Mei _

PDF  |  HTML  |  How to cite  |  Order a Reprint

Oncotarget. 2016; 7:44941-44949. https://doi.org/10.18632/oncotarget.10377

Metrics: PDF 1511 views  |   HTML 2361 views  |   ?  


Abstract

Xin Wang1,2,3,*, Yaling Yu1,4,*, Miaozhong Li1,2,3, Ali Alkhawaji5,6, Chuan Chen1,2, Xiaolin Liu1,4, Junqun Jiang1,4, Jianse Zhang1,4, Zhibin Wang1,4, Ting Li1,4, Weiwen Zhang2,3 and Jin Mei1,4,7

1 Institute of Bioscaffold Transplantation and Immunology, Wenzhou Medical University, Wenzhou, China

2 Medical School of Ningbo University, Ningbo, China

3 Department of Hand Surgery, Ningbo No.6 Hospital, Ningbo, China

4 Anatomy Department, Wenzhou Medical University, Wenzhou, China

5 Department of Anatomy, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia

6 Department of Medical Neuroscience, Dalhousie University, Nova Scotia, Canada

7 Institute of Neuroscience, Wenzhou Medical University, Wenzhou, China

* These authors have contributed equally to this work

Correspondence to:

Jin Mei, email:

Weiwen Zhang, email:

Keywords: endothelial progenitor cells; angiogenesis; decellularized scaffolds; homing; Pathology Section

Received: March 28, 2016 Accepted: June 17, 2016 Published: July 01, 2016

Abstract

Decellularized renal scaffolds have previously been used for renal regeneration following partial nephrectomy, in which angiogenesis played a key role. In this study, rats underwent partial nephrectomy and repaired with decellularized renal scaffolds. Subsequently, the labeled EPCs were intravenously injected into rats in EPCs group, and the control group received an equal amount of phosphate-buffer saline (PBS). We chose 1, 2 and 4 weeks post operation as time point. Average microvascular density (aMVD) analyses revealed higher angiogenesis in EPCs group compared with the control group. The expression of angiogenic growth factors including vascular endothelial growth factor (VEGF), platelet derived growth factor (PDGF) and hypoxia-inducible factors 1-alpha (HIF-1α), was generally higher in the EPCs group in all weeks (1, 2 and 4), and peaked in week 2. EPCs were observed to home into renal injury site, promoting angiogenesis across the renal parenchyma-scaffold interface to be potentially used as bridges for EPCs to migrate into the implanted scaffolds. Administration of exogenous EPCs promotes angiogenesis and vasculogenesis in decellularized renal scaffolds-mediated renal regeneration, providing adequate microenvironment for kidney recovery post renal injury.


Creative Commons License All site content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 License.
PII: 10377