Research Papers:

Biguanides sensitize leukemia cells to ABT-737-induced apoptosis by inhibiting mitochondrial electron transport

Juliana Velez _, Rongqing Pan, Jason T.C. Lee, Leonardo Enciso, Marta Suarez, Jorge Eduardo Duque, Daniel Jaramillo, Catalina Lopez, Ludis Morales, William Bornmann, Marina Konopleva, Gerald Krystal, Michael Andreeff and Ismael Samudio

PDF  |  HTML  |  Supplementary Files  |  How to cite

Oncotarget. 2016; 7:51435-51449. https://doi.org/10.18632/oncotarget.9843

Metrics: PDF 1980 views  |   HTML 4363 views  |   ?  


Juliana Velez1,2, Rongqing Pan6, Jason T.C. Lee7, Leonardo Enciso2, Marta Suarez2, Jorge Eduardo Duque3, Daniel Jaramillo1, Catalina Lopez4, Ludis Morales1, William Bornmann5, Marina Konopleva6, Gerald Krystal7, Michael Andreeff6, Ismael Samudio1,2,8

1Grupo de Terapia Celular y Molecular, Pontificia Universidad Javeriana, Bogotá, Colombia

2Programa de Investigación e Innovación en Leucemia Aguda y Crónica (PILAC), Bogotá, Colombia

3Centro Oncológico de Antioquia, Medellín, Colombia

4Grupo de Terapia Regenerativa, Universidad de Caldas, Manizales, Colombia

5Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA

6Section of Molecular Hematology and Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA

7Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, Canada

8Centre for Drug Research and Development, Vancouver, Canada

Correspondence to:

Ismael Samudio, email: [email protected]

Keywords: metformin, phenformin, leukemia, mitochondria, ABT 737

Received: February 16, 2016    Accepted: May 22, 2016    Published: June 06, 2016


Metformin displays antileukemic effects partly due to activation of AMPK and subsequent inhibition of mTOR signaling. Nevertheless, Metformin also inhibits mitochondrial electron transport at complex I in an AMPK-independent manner, Here we report that Metformin and rotenone inhibit mitochondrial electron transport and increase triglyceride levels in leukemia cell lines, suggesting impairment of fatty acid oxidation (FAO). We also report that, like other FAO inhibitors, both agents and the related biguanide, Phenformin, increase sensitivity to apoptosis induction by the bcl-2 inhibitor ABT-737 supporting the notion that electron transport antagonizes activation of the intrinsic apoptosis pathway in leukemia cells. Both biguanides and rotenone induce superoxide generation in leukemia cells, indicating that oxidative damage may sensitize toABT-737 induced apoptosis. In addition, we demonstrate that Metformin sensitizes leukemia cells to the oligomerization of Bak, suggesting that the observed synergy with ABT-737 is mediated, at least in part, by enhanced outer mitochondrial membrane permeabilization. Notably, Phenformin was at least 10-fold more potent than Metformin in abrogating electron transport and increasing sensitivity to ABT-737, suggesting that this agent may be better suited for targeting hematological malignancies. Taken together, our results suggest that inhibition of mitochondrial metabolism by Metformin or Phenformin is associated with increased leukemia cell susceptibility to induction of intrinsic apoptosis, and provide a rationale for clinical studies exploring the efficacy of combining biguanides with the orally bioavailable derivative of ABT-737, Venetoclax.

Creative Commons License All site content, except where otherwise noted, is licensed under a Creative Commons Attribution 4.0 License.
PII: 9843