The signaling involved in autophagy machinery in keratinocytes and therapeutic approaches for skin diseases

Li Li, Xu Chen and Heng Gu _

PDF  |  HTML  |  How to cite

Oncotarget. 2016; 7:50682-50697. https://doi.org/10.18632/oncotarget.9330

Metrics: PDF 3423 views  |   HTML 5172 views  |   ?  


Li Li1, Xu Chen1,* and Heng Gu1,*

1 Institute of Dermatology, Chinese Academy of Medical Science & Peking Union Medical College, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China

* These authors have contributed equally to this work

Correspondence to:

Heng Gu, email:

Xu Chen, email:

Keywords: autophagy, keratinocyte, skin, skin disease, autophagy-related gene

Received: January 16, 2016 Accepted: April 26, 2016 Published: May 12, 2016


Autophagy is responsible for the lysosomal degradation of proteins, organelles, microorganisms and exogenous particles. Epidermis primarily consists of keratinocytes which functions as an extremely important barrier. Investigation on autophagy in keratinocytes has been continuously renewing, but is not so systematic due to the complexity of the autophagy machinery. Here we reviewed recent studies on the autophagy in keratinocyte with a focus on interplay between autophagy machinery and keratinocytes biology, and novel autophagy regulators identified in keratinocytes. In this review, we discussed the roles of autophagy in apoptosis, differentiation, immune response, survival and melanin metabolism, trying to reveal the possible involvement of autophagy in skin aging, skin disorders and skin color formation. Since autophagy routinely plays a double-edged sword role in various conditions, its functions in skin homeostasis and potential application as a therapeutic target for skin diseases remains to be clarified. Furthermore, more investigations are needed on optimizing designed strategies to inhibit or enhance autophagy for clinical efficacy.

Creative Commons License All site content, except where otherwise noted, is licensed under a Creative Commons Attribution 4.0 License.
PII: 9330