Oncotarget

Research Papers:

Nuclear factor one B (NFIB) encodes a subtype-specific tumour suppressor in glioblastoma

Brett W. Stringer _, Jens Bunt, Bryan W. Day, Guy Barry, Paul R. Jamieson, Kathleen S. Ensbey, Zara C. Bruce, Kate Goasdoué, Hélène Vidal, Sara Charmsaz, Fiona M. Smith, Leanne T. Cooper, Michael Piper, Andrew W. Boyd and Linda J. Richards

PDF  |  HTML  |  Supplementary Files  |  How to cite  |  Order a Reprint

Oncotarget. 2016; 7:29306-29320. https://doi.org/10.18632/oncotarget.8720

Metrics: PDF 1169 views  |   HTML 1502 views  |   ?  


Abstract

Brett W. Stringer1,2, Jens Bunt3, Bryan W. Day1,2, Guy Barry3, Paul R. Jamieson1,2, Kathleen S. Ensbey1,2, Zara C. Bruce1,2, Kate Goasdoué1,2, Hélène Vidal1,2, Sara Charmsaz2, Fiona M. Smith2, Leanne T. Cooper2, Michael Piper3,4, Andrew W. Boyd1,2,5,*, Linda J. Richards3,4,*

1Brain Cancer Research Unit, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Queensland, Australia

2Leukaemia Foundation Research Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Queensland, Australia

3Queensland Brain Institute, The University of Queensland, Brisbane, 4072, Queensland, Australia

4School of Biomedical Sciences, The University of Queensland, Brisbane, 4072, Queensland, Australia

5Department of Medicine, The University of Queensland, Brisbane, 4072, Queensland, Australia

*Co-senior authors

Correspondence to:

Brett W. Stringer, e-mail: Brett.Stringer@qimrberghofer.edu.au

Michael Piper, e-mail: m.piper@uq.edu.au

Andrew W. Boyd, e-mail: Andrew.Boyd@qimrberghofer.edu.au

Linda J. Richards, e-mail: richards@uq.edu.au

Keywords: glioblastoma (GBM), glioma, nuclear factor I B (NFIB), tumour suppressor gene, GBM subtype

Received: November 30, 2015     Accepted: March 28, 2016     Published: April 13, 2016

ABSTRACT

Glioblastoma (GBM) is an essentially incurable and rapidly fatal cancer, with few markers predicting a favourable prognosis. Here we report that the transcription factor NFIB is associated with significantly improved survival in GBM. NFIB expression correlates inversely with astrocytoma grade and is lowest in mesenchymal GBM. Ectopic expression of NFIB in low-passage, patient-derived classical and mesenchymal subtype GBM cells inhibits tumourigenesis. Ectopic NFIB expression activated phospho-STAT3 signalling only in classical and mesenchymal GBM cells, suggesting a mechanism through which NFIB may exert its context-dependent tumour suppressor activity. Finally, NFIB expression can be induced in GBM cells by drug treatment with beneficial effects.


Creative Commons License All site content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 License.
PII: 8720