Research Papers:

Repurposed drug screen identifies cardiac glycosides as inhibitors of TGF-β-induced cancer-associated fibroblast differentiation

David T. Coleman _, Alana L. Gray, Charles A. Stephens, Matthew L. Scott and James A. Cardelli

PDF  |  HTML  |  How to cite  |  Order a Reprint

Oncotarget. 2016; 7:32200-32209. https://doi.org/10.18632/oncotarget.8609

Metrics: PDF 1060 views  |   HTML 1604 views  |   ?  


David T. Coleman1,*, Alana L. Gray1,*, Charles A. Stephens1,*, Matthew L. Scott1, James A. Cardelli1

1Louisiana State University Health Sciences Center, Feist-Weiller Cancer Center, Shreveport, LA, USA

*These authors contributed equally to this work

Correspondence to:

David T. Coleman, email: dcole1@lsuhsc.edu

Keywords: cancer-associated fibroblast, cardiac glycosides, tumor microenvironment, drug screen, digoxin

Received: January 29, 2016     Accepted: March 14, 2016     Published: April 06, 2016


The tumor microenvironment, primarily composed of myofibroblasts, directly influences the progression of solid tumors. Through secretion of growth factors, extracellular matrix deposition, and contractile mechanotransduction, myofibroblasts, or cancer-associated fibroblasts (CAFs), support angiogenesis and cancer cell invasion and metastasis. The differentiation of fibroblasts to CAFs is primarily induced by TGF-β from cancer cells. To discover agents capable of blocking CAF differentiation, we developed a high content immunofluorescence-based assay to screen repurposed chemical libraries utilizing fibronectin expression as an initial CAF marker. Screening of the Prestwick chemical library and NIH Clinical Collection repurposed drug library, totaling over 1700 compounds, identified cardiac glycosides as particularly potent CAF blocking agents. Cardiac glycosides are traditionally used to regulate intracellular calcium by inhibiting the Na+/K+ ATPase to control cardiac contractility. Herein, we report that multiple cardiac glycoside compounds, including digoxin, are able to inhibit TGF-β-induced fibronectin expression at low nanomolar concentrations without undesirable cell toxicity. We found this inhibition to hold true for multiple fibroblast cell lines. Using real-time qPCR, we determined that digoxin prevented induction of multiple CAF markers. Furthermore, we report that digoxin is able to prevent TGF-β-induced fibroblast contraction of extracellular matrix, a major phenotypic consequence of CAF differentiation. Assessing the mechanism of inhibition, we found digoxin reduced SMAD promoter activity downstream of TGF-β, and we provide data that the effect is through inhibition of its known target, the Na+/K+ ATPase. These findings support a critical role for calcium signaling during CAF differentiation and highlight a novel, repurposable modality for cancer therapy.

Creative Commons License All site content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 License.
PII: 8609