Research Papers:

A novel double-negative feedback loop between miR-489 and the HER2-SHP2-MAPK signaling axis regulates breast cancer cell proliferation and tumor growth

Yogin Patel _, Nirav Shah, Ji Shin Lee, Eleni Markoutsa, Chunfa Jie, Shou Liu, Rachel Botbyl, David Reisman, Peisheng Xu and Hexin Chen

PDF  |  HTML  |  Supplementary Files  |  How to cite  |  Order a Reprint

Oncotarget. 2016; 7:18295-18308. https://doi.org/10.18632/oncotarget.7577

Metrics: PDF 1386 views  |   HTML 1625 views  |   ?  


Yogin Patel1,2,*, Nirav Shah1,2,*, Ji Shin Lee3, Eleni Markoutsa4, Chunfa Jie5, Shou Liu1,2, Rachel Botbyl1,2, David Reisman1,2, Peisheng Xu4, Hexin Chen1,2

1Department of Biological Science, University of South Carolina, Columbia, SC, USA

2Center for Colon Cancer Research, University of South Carolina, Columbia, SC, USA

3Department of Surgery, Chonnam National University, Gwangju, Republic of Korea

4Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC, USA

5Master of Science in Biomedical Sciences Program, Des Moines University, Des Moines, IA, USA

*These authors have contributed equally to this work

Correspondence to:

Hexin Chen, e-mail: hchen@biol.sc.edu

Keywords: microRNA, miR-489, HER2, breast cancer, tumor suppressor

Received: December 2, 2015    Accepted: February 11, 2016    Published: February 22, 2016


Human epidermal growth factor receptor 2 (HER2 or ErBb2) is a receptor tyrosine kinase overexpressed in 20-30% of breast cancers and associated with poor prognosis and outcome. Dysregulation of several microRNAs (miRNAs) plays a key role in breast cancer progression and metastasis. In this study, we screened and identified miRNAs dysregualted in HER2-positive breast cancer cells. Our molecular study demonstrated that miR-489 was specifically downregulated by the HER2-downstream signaling, especially through the MAPK pathway. Restoration or overexpression of miR-489 in HER2-positive breast cancer cells significantly inhibited cell growth in vitro and decreased the tumorigenecity and tumor growth in xenograft mice. Mechanistically, we found that overexpression of miR-489 led to the decreased levels of HER2 and SHP2 and thus attenuated HER2-downstream signaling. Furthermore, we for the first time demonstrated that HER2 is a direct target of miR-489 and therefore HER2-SHP2-MAPK and miR-489 signaling pathways form a mutually inhibitory loop. Using quantitative real-time PCR analysis and Fluorescent in situ hybridization technique (FISH), we found that miR-489 was expressed at significantly lower level in tumor tissues compared to the adjacent normal tissues. Downregulation of miR-489 in breast cancers was associated with aggressive tumor phenotypes. Overall, our results define a double-negative feedback loop involving miR-489 and the HER2-SHP2-MAPK signaling axis that can regulate breast cancer cell proliferation and tumor progression and might have therapeutic relevance for HER2-positive breast cancer.

Creative Commons License All site content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 License.
PII: 7577