Research Papers:

miRNA-regulated delivery of lincRNA-p21 suppresses β-catenin signaling and tumorigenicity of colorectal cancer stem cells

Jun Wang _, Zeng-jie Lei, Yan Guo, Tao Wang, Zhong-yi Qin, Hua-liang Xiao, Li-lin Fan, Dong-feng Chen, Xiu-wu Bian, Jia Liu and Bin Wang

PDF  |  HTML  |  Supplementary Files  |  How to cite  |  Order a Reprint

Oncotarget. 2015; 6:37852-37870. https://doi.org/10.18632/oncotarget.5635

Metrics: PDF 4401 views  |   HTML 2309 views  |   ?  


Jun Wang1, Zeng-jie Lei1, Yan Guo1, Tao Wang1, Zhong-yi Qin1, Hua-liang Xiao2, Li-lin Fan1, Dong-feng Chen1, Xiu-wu Bian3, Jia Liu4, Bin Wang1

1Department of Gastroenterology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China

2Department of Pathology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China

3Institute of Pathology and Southwest Cancer Center, Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest Hospital, Third Military Medical University, Chongqing 400038, China

4Institute of Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China

Correspondence to:

Bin Wang, e-mail: wb_tmmu@126.com

Jia Liu, e-mail: dadaliujia@gmail.com

Keywords: β-catenin signaling, colorectal cancer, cancer stem cells, lncRNA, miRNA

Received: March 29, 2015     Accepted: October 06, 2015     Published: October 16, 2015


Cancer stem cells (CSCs) are key cellular targets for effective cancer therapy, due to their critical roles in cancer progression and chemo/radio-resistance. Emerging evidence demonstrates that long non-coding RNAs (lncRNAs) are important players in the biology of cancers. However, it remains unknown whether lncRNAs could be exploited to target CSCs. We report that large intergenic non-coding RNA p21 (lincRNA-p21) is a potent suppressor of stem-like traits of CSCs purified from both primary colorectal cancer (CRC) tissues and cell lines. A novel lincRNA-p21-expressing adenoviral vector, which was armed with miRNA responsive element (MRE) of miR-451 (Ad-lnc-p21-MRE), was generated to eliminate CRC CSCs. Integration of miR-451 MREs into the adenovirus efficiently delivered lincRNA-p21 into CSCs that contained low levels of miR-451. Moreover, lincRNA-p21 inhibited the activity of β-catenin signaling, thereby attenuating the viability, self-renewal, and glycolysis of CSCs in vitro. By limiting dilution and serial tumor formation assay, we demonstrated that Ad-lnc-p21-MRE significantly suppressed the self-renewal potential and tumorigenicity of CSCs in nude mice. Importantly, application of miR-451 MREs appeared to protect normal liver cells from off-target expression of lincRNA-p21 in both tumor-bearing and naïve mice. Taken together, these findings suggest that lncRNAs may be promising therapeutic molecules to eradicate CSCs and MREs of tumor-suppressor miRNAs, such as miR-451, may be exploited to ensure the specificity of CSC-targeting strategies.

Creative Commons License All site content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 License.
PII: 5635