Oncotarget

Research Papers:

Singular v Dual Inhibition of SNF2L and Its Isoform, SNF2LT, Have Similar Effects on DNA Damage but Opposite Effects on the DNA Damage Response, Cancer Cell Growth Arrest and Apoptosis

Yin Ye, Yi Xiao, Wenting Wang, Jian-Xin Gao, Kurtis Yearsley, Quintao Yan and Sanford H. Barsky _

PDF  |  HTML  |  Supplementary Files  |  How to cite  |  Order a Reprint

Oncotarget. 2012; 3:475-489. https://doi.org/10.18632/oncotarget.479

Metrics: PDF 1735 views  |   HTML 1953 views  |   ?  


Abstract

Yin Ye1, Yi Xiao2, Wenting Wang2, Jian-Xin Gao2, Kurtis Yearsley2, Quintao Yan2 and Sanford H. Barsky1,3,4

1 Department of Pathology, University of Nevada School of Medicine, Reno, NV

2 Department of Pathology, Ohio State University College of Medicine, Columbus, OH

3 The Whittemore-Peterson Institute, Reno, NV

4 Nevada Cancer Institute, Las Vegas, NV

Received: April 11, 2012, Accepted: April 28, 2012, Published: May 9, 2012

Keywords: SNF2L, DNA damage, SNF2LT, NURF

Correspondence:

Sanford H. Barsky,

Abstract

SNF2L, an ATPase chromatin remodeling gene nearly ubiquitously expressed in diverse tissues, cancers, and derived cell lines, contributes to the chromatin remodeling complex that facilitates transcription. Because of this near ubiquitous expression, it has not been exploited as a cancer therapeutic target. However, in a recent study, we found that highly malignant cancer cells, although expressing SNF2L at similar levels as their normal counterparts, were sensitive to its knockdown. Only the highly malignant (HM) lines showed significant growth inhibition, DNA damage, a DNA damage response, and phosphorylation of checkpoint proteins and marked apoptosis. In studying SNF2L, we discovered a novel truncated isoform, SNF2LT which, when compared to full length SNF2L, lacked three important domains: HAND, SANT and SLIDE. Although truncated isoforms usually have antagonistic functions to their parental molecule, here SNF2LT knockdown had similar effects to the knockdown of its parental molecule, SNF2L, of inducing DNA damage, a DNA damage response, cell cycle arrest and apoptosis selectively in cancer cell lines. However dual SNF2L and SNF2LT knockdown, while inducing DNA damage, did not result in a DNA damage response, a cell cycle arrest and apoptosis. In fact HM lines subjected to dual knockdown paradoxically exhibited sustained cell growth. Our findings indicate that the ratio of SNF2L to its isoform tightly regulates the cancer cell’s response to DNA damage. Cancer cell lines which endogenously express low levels of both SNF2L and its isoform mimic the situation of dual knockdown and permit DNA damage which is allowed to propagate unchecked.


Creative Commons License All site content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 License.
PII: 479