miR-29s: a family of epi-miRNAs with therapeutic implications in hematologic malignancies

Nicola Amodio, Marco Rossi, Lavinia Raimondi, Maria Rita Pitari, Cirino Botta, Pierosandro Tagliaferri and Pierfrancesco Tassone _

PDF  |  HTML  |  How to cite  |  Order a Reprint

Oncotarget. 2015; 6:12837-12861. https://doi.org/10.18632/oncotarget.3805

Metrics: PDF 1958 views  |   HTML 2643 views  |   ?  


Nicola Amodio1, Marco Rossi1, Lavinia Raimondi2, Maria Rita Pitari1, Cirino Botta1, Pierosandro Tagliaferri1 and Pierfrancesco Tassone1,3

1 Department of Experimental and Clinical Medicine, Magna Graecia University and Medical Oncology Unit, T. Campanella Cancer Center, Salvatore Venuta University Campus, Catanzaro, Italy

2 Laboratory of Tissue Engineering-Innovative Technology Platforms for Tissue Engineering (PON01-00829), Rizzoli Orthopedic Institute, Palermo, Italy

3 Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA

Correspondence to:

Pierfrancesco Tassone, email:

Keywords: miR-29a, miR-29b, miR-29c, hematologic malignancies, multiple myeloma

Received: February 15, 2015 Accepted: March 18, 2015 Published: April 12, 2015


A wealth of studies has highlighted the biological complexity of hematologic malignancies and the role of dysregulated signal transduction pathways. Along with the crucial role of genetic abnormalities, epigenetic aberrations are nowadays emerging as relevant players in cancer development, and significant research efforts are currently focusing on mechanisms by which histone post-translational modifications, DNA methylation and noncoding RNAs contribute to the pathobiology of cancer. As a consequence, these studies have provided the rationale for the development of epigenetic drugs, such as histone deacetylase inhibitors and demethylating compounds, some of which are currently in advanced phase of pre-clinical investigation or in clinical trials. In addition, a more recent body of evidence indicates that microRNAs (miRNAs) might target effectors of the epigenetic machinery, which are aberrantly expressed or active in cancers, thus reverting those epigenetic abnormalities driving tumor initiation and progression. This review will focus on the broad epigenetic activity triggered by members of the miR-29 family, which underlines the potential of miR-29s as candidate epi-therapeutics for the treatment of hematologic malignancies.

Creative Commons License All site content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 License.
PII: 3805