Research Papers:

This article has been corrected. Correction in: Oncotarget. 2022; 13:968-969.

Next-generation multimodality of nutrigenomic cancer therapy: sulforaphane in combination with acetazolamide actively target bronchial carcinoid cancer in disabling the PI3K/Akt/mTOR survival pathway and inducing apoptosis

Reza Bayat Mokhtari _, Bessi Qorri, Narges Baluch, Angelo Sparaneo, Federico Pio Fabrizio, Lucia Anna Muscarella, Albina Tyker, Sushil Kumar, Hai-Ling Margaret Cheng, Myron R. Szewczuk _, Bikul Das and Herman Yeger _

PDF  |  Full Text  |  How to cite  |  Press Release

Oncotarget. 2021; 12:1470-1489. https://doi.org/10.18632/oncotarget.28011

Metrics: PDF 1304 views  |   Full Text 4269 views  |   ?  


Reza Bayat Mokhtari1,2,3, Bessi Qorri3, Narges Baluch4, Angelo Sparaneo5, Federico Pio Fabrizio5, Lucia Anna Muscarella5, Albina Tyker6, Sushil Kumar7, Hai-Ling Margaret Cheng8, Myron R. Szewczuk3, Bikul Das2,9,10 and Herman Yeger1

1 Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada

2 Department of Experimental Therapeutics, Thoreau Laboratory for Global Health, M2D2, University of Massachusetts, Lowell, MA, USA

3 Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada

4 Department of Immunology and Allergy, The Hospital for Sick Children, Toronto, Ontario, Canada

5 Laboratory of Oncology, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo FG, Italy

6 Department of Internal Medicine, University of Chicago, Chicago, IL, USA

7 Q.P.S. Holdings LLC, Pencader Corporate Center, Newark, DE, USA

8 Institute of Biomedical Engineering, The Edward S. Rogers Sr. Department of Electrical & Computer Engineering, University of Toronto, Toronto, Canada

9 Department of Cancer and Stem Cell Biology, KaviKrishna Laboratory, Guwahati Biotech Park, Indian Institute of Technology, Guwahati, Assam, India

10 Department of Immunology and Infectious Diseases, Forsyth Institute, Cambridge, MA, USA

Correspondence to:

Herman Yeger,email: [email protected]
Reza Bayat Mokhtari,email: [email protected]
Myron R. Szewczuk,email: [email protected]

Keywords: sulforaphane; acetazolamide; bronchial carcinoid tumors; serotonin; carbonic anhydrase

Received: May 29, 2021     Accepted: June 14, 2021     Published: July 20, 2021

Copyright: © 2021 Mokhtari et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.


Objective: Aberrations in the PI3K/AKT/mTOR survival pathway in many cancers are the most common genomic abnormalities. The phytochemical and bioactive agent sulforaphane (SFN) has nutrigenomic potential in activating the expression of several cellular protective genes via the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2). Nrf2 is primarily related to mechanisms of endogenous cellular defense and survival. The efficacy of SFN in combination with acetazolamide (AZ) was investigated in reducing typical H727 and atypical H720 BC survival, migration potential, and apoptosis in vitro and in vivo preclinical xenograft tissues.

Materials and Methods: Microscopic imaging, immunocytochemistry, wound healing assay, caspase-cleaved cytokeratin 18 (M30, CCK18) CytoDeath ELISA assay, immunofluorescence labeling assays for apoptosis, hypoxia, Western Blotting, Tunnel assay, measurement of 5-HT secretion by carbon fiber amperometry assay, quantitative methylation-specific PCR (qMSP), morphologic changes, cell viability, apoptosis activity and the expression levels of phospho-Akt1, Akt1, HIF-1α, PI3K, p21, CAIX, 5-HT, phospho-mTOR, and mTOR in xenografts derived from typical H727 and atypical H720 BC cell lines.

Results: Combining AZ+SFN reduced tumor cell survival compared to each agent alone, both in vitro and in vivo xenograft tissues. AZ+SFN targeted multiple pathways involved in cell cycle, serotonin secretion, survival, and growth pathways, highlighting its therapeutic approach. Both H727 and H720 cells were associated with induction of apoptosis, upregulation of the p21 cell cycle inhibitor, and downregulation of the PI3K/Akt/mTOR pathway, suggesting that the PI3K/Akt/mTOR pathway is a primary target of the AZ+SFN combination therapy.

Conclusions: Combining SFN+AZ significantly inhibits the PI3K/Akt/mTOR pathway and significantly reducing 5-HT secretion in carcinoid syndrome.

Creative Commons License All site content, except where otherwise noted, is licensed under a Creative Commons Attribution 4.0 License.
PII: 28011