Oncotarget

Research Papers:

The noradrenergic profile of plasma metanephrine in neuroblastoma patients is reproduced in xenograft mice models and arise from PNMT downregulation

Karim Abid _, Maja Beck Popovic, Katia Balmas Bourloud, Jacqueline Schoumans, Joana Grand-Guillaume, Eric Grouzmann and Annick Mühlethaler-Mottet _

Metrics: PDF 61 views  |   Full Text 108 views  |   ?  


Abstract

Karim Abid1, Maja Beck Popovic2, Katia Balmas Bourloud3, Jacqueline Schoumans4, Joana Grand-Guillaume1, Eric Grouzmann1 and Annick Mühlethaler-Mottet3

1 Catecholamine and Peptides Laboratory, Service of Clinical Pharmacology and Toxicology, Lausanne University Hospital and University of Lausanne, Switzerland

2 Pediatric Hematology-Oncology Unit, Woman-Mother-Child Department, Lausanne University Hospital and University of Lausanne, Switzerland

3 Pediatric Hematology-Oncology Research Laboratory, Woman-Mother-Child Department, Lausanne University Hospital and University of Lausanne, Switzerland

4 Oncogenomics Laboratory, Hematology Service, Laboratory Medicine and Pathology Department, Lausanne University Hospital and University of Lausanne, Switzerland

Correspondence to:

Annick Mühlethaler-Mottet,email: Annick.Muhlethaler@chuv.ch
Karim Abid,email: Karim-Alexandre.Abid@chuv.ch

Keywords: neuroblastoma; metanephrine; patient-derived xenograft; mouse model; Phenylethanolamine N-Methyltransferase

Received: October 06, 2020     Accepted: December 16, 2020     Published: January 05, 2021

Copyright: © 2021 Abid et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

ABSTRACT

Metanephrines (MNs; normetanephrine (NMN), metanephrine (MN) and methoxytyramine (MT)) detected in urine or plasma represent the best biomarker for neuroblastoma (NB) diagnosis, however the metabolism of both catecholamine (CAT) and MNs remains enigmatic in NB. Using patient-derived xenograft (PDX) models derived from primary NB cells, we observed that the plasma levels of MNs in NB-PDX-bearing mice were comparable as in patients. Interestingly, murine plasma displayed an elevated fraction of glucuronidated forms of MNs relative to human plasma where sulfonated forms prevail. In tumors, the concentration ranges of MNs and CAT and the expression levels of the main genes involved in catecholamine metabolism were similar between NB-PDX and human NB tissues. Likewise, plasma and intratumoral profiles of individual MNs, with increased levels of MT and NMN relative to MN, were also conserved in mouse models as in patients. We further demonstrated the downregulation of the Phenylethanolamine N-Methyltransferase gene in NB biopsies and in NB-PDX explaining this biochemical phenotype, and giving a rational to the low levels of epinephrine and MN measured in NB affected patients. Thus, our subcutaneous murine NB-PDX models not only reproduce the phenotype of primary NB tumors, but also the metabolism of catecholamine as observed in patients. This may potentially open new avenues in preclinical studies for the follow up of novel therapeutic options for NB through the quantification of plasma MNs.


Creative Commons License All site content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 License.
PII: 27858