Research Perspectives:

Simplifying checkpoint inhibitor delivery through in vivo generation of synthetic DNA-encoded monoclonal antibodies (DMAbs)

Alfredo Perales-Puchalt, Elizabeth K. Duperret, Kar Muthumani and David B. Weiner _

PDF  |  Full Text  |  How to cite

Oncotarget. 2019; 10:13-16. https://doi.org/10.18632/oncotarget.26535

Metrics: PDF 1737 views  |   Full Text 2745 views  |   ?  


Alfredo Perales-Puchalt1, Elizabeth K. Duperret1, Kar Muthumani1 and David B. Weiner1

1 Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, USA

Correspondence to:

David B. Weiner, email: [email protected]

Keywords: immunotherapy; cancer; immune checkpoints; DMAb; monoclonal antibody

Received: December 13, 2018    Accepted: December 16, 2018    Published: January 01, 2019


Checkpoint inhibitors (CPI) have revolutionized the treatment of many solid tumors. However, difficulties in production, stability, the requirement of frequent high doses for antibody administration and long intravenous administration are recurring issues. Synthetically designed DNA-encoded monoclonal antibodies (DMAbs) are a novel delivery method for antibody therapy which could potentially address many of these issues, simplifying design and implementation of MAb-based therapies. DMAbs delivered through plasmid DNA injection and electroporation have been used in preclinical models for the treatment or prophylaxis of infectious diseases, cancer and cardiovascular disease. Our group has recently reported that immune checkpoint blockers can be optimized and delivered in vivo advancing further DMAb technology by optimization, expression and in vivo functional characterization of anti-CTLA4 antibodies. Here we report optimization, expression and binding of DMAbs based on anti-PD1 CPI and discuss the potential of DMAbs in checkpoint immunotherapy.

Creative Commons License All site content, except where otherwise noted, is licensed under a Creative Commons Attribution 4.0 License.
PII: 26535