Research Papers:

Efficacy of a new cancer treatment strategy based on eradication of tumor-initiating stem cells in a mouse model of Krebs-2 solid adenocarcinoma

Ekaterina A. Potter, Anastasia S. Proskurina _, Genrikh S. Ritter, Evgenia V. Dolgova, Valeriy P. Nikolin, Nelly A. Popova, Oleg S. Taranov, Yaroslav R. Efremov, Sergey I. Bayborodin, Aleksandr A. Ostanin, Elena R. Chernykh, Nikolay A. Kolchanov and Sergey S. Bogachev

PDF  |  HTML  |  Supplementary Files  |  How to cite  |  Order a Reprint

Oncotarget. 2018; 9:28486-28499. https://doi.org/10.18632/oncotarget.25503

Metrics: PDF 453 views  |   HTML 845 views  |   ?  


Ekaterina A. Potter1,*, Anastasia S. Proskurina1,*, Genrikh S. Ritter1,2, Evgenia V. Dolgova1, Valeriy P. Nikolin1, Nelly A. Popova1,2, Oleg S. Taranov3, Yaroslav R. Efremov1,2, Sergey I. Bayborodin1, Aleksandr A. Ostanin4, Elena R. Chernykh4, Nikolay A. Kolchanov1 and Sergey S. Bogachev1

1Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia

2Novosibirsk State University, Novosibirsk, Russia

3State Research Center of Virology and Biotechnology “Vector”, Koltsovo, Novosibirsk, Russia

4Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia

*These authors have contributed equally to this work

Correspondence to:

Anastasia S. Proskurina, email: asproskurina@gmail.com

Keywords: DNA internalization; synchronization; cyclophosphamide; seasonal cyclicity; repair cycle

Abbreviations: TISCs, tumor initiating stem cells; ICLs, interstrand cross-links; CP, cyclophosphamide

Received: November 01, 2017    Accepted: May 14, 2018    Published: June 19, 2018


Krebs-2 solid carcinoma was cured using a new “3+1” strategy for eradication of Krebs-2 tumor-initiating stem cells. This strategy was based on synchronization of these cells in a treatment-sensitive phase of the cell cycle. The synchronization mechanism, subsequent destruction of Krebs-2 tumor-initiating stem cells, and cure of mice from a solid graft were found to depend on the temporal profile of the interstrand cross-link repair cycle. Also, the temporal profile of the Krebs-2 interstrand repair cycle was found to have a pronounced seasonal cyclicity at the place of experiments (Novosibirsk, Russia). As a result, the therapeutic effect that is based on application of the described strategy, originally developed for the “winter repair cycle” (November−April), is completely eliminated in the summer period (June−September). We conclude that one of the possible and the likeliest reasons for our failure to observe the therapeutic effects was the seasonal cyclicity in the duration of the interstrand repair cycle, the parameter that is central to our strategy.

Creative Commons License All site content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 License.
PII: 25503