Differential role of CXCR3 in inflammation and colorectal cancer

Jessicca D. Abron _, Narendra P. Singh, Angela E. Murphy, Manoj K. Mishra, Robert L. Price, Mitzi Nagarkatti, Prakash S. Nagarkatti and Udai P. Singh

PDF  |  HTML  |  How to cite

Oncotarget. 2018; 9:17928-17936. https://doi.org/10.18632/oncotarget.24730

Metrics: PDF 2613 views  |   HTML 4664 views  |   ?  


Jessicca D. Abron1, Narendra P. Singh1, Angela E. Murphy1, Manoj K. Mishra2, Robert L. Price3, Mitzi Nagarkatti1, Prakash S. Nagarkatti1 and Udai P. Singh1

1Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC 29208, USA

2Department of Biological Sciences, Alabama State University, Montgomery, AL 36104, USA

3Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC 29208, USA

Correspondence to:

Udai P. Singh, email: [email protected]

Keywords: inflammation; CXCR3; chemokine; colorectal cancer; tumor microenvironment

Received: September 06, 2017     Accepted: March 02, 2018     Published: April 03, 2018


Chemokines (CXCR3) and their ligands (CXCL9, CXCL10, and CXCL11) exert exquisite control over T-cell trafficking and are critical for activation, differentiation and effector T cell function. CXCR3 is important for CD4 Th1 cells, CD8 effectors, memory cells, and for the function of natural killer and natural killer T cells. The presence of high cytotoxic CXCR3 ligand expression on CD8 T cells in colorectal cancerous tissue has been well documented in the past. CXCR3 and its ligands are differentially expressed at sites of inflammation and within the tumors. Further, the expression of CXCR3 and its ligands has been correlated with both the presence of effector T cells within tumor tissue and disease-free survival of patients. However, effector T cell infiltration into primary and metastatic tumors is highly variable and, in fact, often absent. Thus, understanding why T cells fail to infiltrate into tumors and determining the way to improve effector T cell entry into tumors would be important advances in efforts to harness the power of the immune system to fight cancer. To this end, the recent exciting discovery that CXCR3 is functionally expressed on regulatory T cells and also induces the differentiation of peripheral CD4 T cells into regulatory T cells, might address the novel clinically relevant question of the therapeutic potential of the CXCR3 system. This is also coupled with the fact that increases in CXCR3 expression also improves effector T cell function. This review describes the differential role of CXCR3 induction on peripheral and tumor microenvironment inflammation. Further, this review, tied with important findings from our laboratory, demonstrates that polyphenols induce CXCR3 expression on regulatory T cells and increases CXCR3 ligands in the tumor microenvironment, which act together to suppress colorectal cancer through a differential mechanism discussed herewith.

Creative Commons License All site content, except where otherwise noted, is licensed under a Creative Commons Attribution 4.0 License.
PII: 24730