Research Papers:
2'-Hydroxyflavanone effectively targets RLIP76-mediated drug transport and regulates critical signaling networks in breast cancer
PDF | HTML | Supplementary Files | How to cite
Metrics: PDF 1768 views | HTML 2770 views | ?
Abstract
Lokesh Dalasanur Nagaprashantha1, Jyotsana Singhal1,2, Hongzhi Li3, Charles Warden4, Xueli Liu5, David Horne2, Sanjay Awasthi6, Ravi Salgia1 and Sharad S. Singhal1
1Department of Medical Oncology, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
2Department of Molecular Medicine, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
3Department of Computational Therapeutics, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
4Department of Genomic Core, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
5Department of Information Sciences & Biostatistics, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
6Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
Correspondence to:
Sharad S. Singhal, email: [email protected]
Keywords: breast cancer; 2'-hydroxyflavanone; ERα; RLIP76; HER2
Received: January 30, 2018 Accepted: March 06, 2018 Published: April 06, 2018
ABSTRACT
Breast cancer (BC) is the most common cancer in women. Estrogen, epidermal growth factor receptor 2 (ERBB2, HER2), and oxidative stress represent critical mechanistic nodes associated with BC. RLIP76 is a major mercapturic acid pathway transporter whose expression is increased in BC. In the quest of a novel molecule with chemopreventive and chemotherapeutic potential, we evaluated the effects of 2'-Hydroxyflavanone (2HF) in BC. 2HF enhanced the inhibitory effects of RLIP76 depletion and also inhibited RLIP76-mediated doxorubicin transport in BC cells. RNA-sequencing revealed that 2HF induces strong reversal of the gene expression pattern in ER+MCF7, HER2+ SKBR3 and triple-negative MDA-MB-231 BC cells with minimal effects on MCF10A normal breast epithelial cells. 2HF down regulated ERα and enhanced inhibitory effects of imatinib mesylate/Gleevec in MCF7 cells. 2HF also down regulated ERα and HER2 gene networks in MCF7 and SKBR3 cells, respectively. 2HF activated TP53 and inhibited TGFβ1 canonical pathway in MCF7 and MDA-MB-231 BC cells. 2HF also regulated the expression of a number of critical prognostic genes of MammaPrint panel and their upstream targets including TP53, CDKN2A and MYC. The collective findings from this study provide a comprehensive, direct and integrated evidence for the benefits of 2HF in targeting major and clinically relevant mechanistic regulators of BC.
All site content, except where otherwise noted, is licensed under a Creative Commons Attribution 4.0 License.
PII: 24720