Research Papers:

An integrated approach identifies new oncotargets in melanoma

Daniela Cecconi, Luca Dalle Carbonare _, Antonio Mori, Samuele Cheri, Michela Deiana, Jessica Brandi, Vincenzo Degaetano, Valentina Masiero, Giulio Innamorati, Monica Mottes, Giovanni Malerba and Maria Teresa Valenti

PDF  |  HTML  |  Supplementary Files  |  How to cite

Oncotarget. 2018; 9:11489-11502. https://doi.org/10.18632/oncotarget.23727

Metrics: PDF 1750 views  |   HTML 3084 views  |   ?  


Daniela Cecconi1, Luca Dalle Carbonare2, Antonio Mori3, Samuele Cheri3, Michela Deiana3, Jessica Brandi1, Vincenzo Degaetano2, Valentina Masiero2, Giulio Innamorati2, Monica Mottes3, Giovanni Malerba3 and Maria Teresa Valenti2

1Department of Biotechnology, Mass Spectrometry and Proteomics Lab, University of Verona, 37134 Verona, Italy

2Department of Medicine, Internal Medicine, Section D, University of Verona, 37134 Verona, Italy

3Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy

Correspondence to:

Luca Dalle Carbonare, email: [email protected]

Keywords: melanoma; oncotarget; ascorbic acid; gene expression; proteomics

Received: May 26, 2017     Accepted: October 16, 2017     Published: December 15, 2017


Melanoma is an aggressive skin cancer; an early detection of the primary tumor may improve its prognosis. Despite many genes have been shown to be involved in melanoma, the full framework of melanoma transformation has not been completely explored. The characterization of pathways involved in tumor restraint in in vitro models may help to identify oncotarget genes. We therefore aimed to probe novel oncotargets through an integrated approach involving proteomic, gene expression and bioinformatic analysis

We investigated molecular modulations in melanoma cells treated with ascorbic acid, which is known to inhibit cancer growth at high concentrations. For this purpose a proteomic approach was applied. A deeper insight into ascorbic acid anticancer activity was achieved; the discovery of deregulated processes suggested further biomarkers. In addition, we evaluated the expression of identified genes as well as the migration ability in several melanoma cell lines.

Data obtained by a multidisciplinary approach demonstrated the involvement of Enolase 1 (ENO1), Parkinsonism-associated deglycase (PARK7), Prostaglansin E synthase 3 (PTGES3), Nucleophosmin (NPM1), Stathmin 1 (STMN1) genes in cell transformation and identified Single stranded DNA binding protein 1 (SSBP1) as a possible onco-suppressor in melanoma cancer.

Creative Commons License All site content, except where otherwise noted, is licensed under a Creative Commons Attribution 4.0 License.
PII: 23727