Research Papers:

The microtubule-associated protein PRC1 is a potential therapeutic target for lung cancer

Steffen Hanselmann, Patrick Wolter, Jonas Malkmus and Stefan Gaubatz _

PDF  |  HTML  |  Supplementary Files  |  How to cite

Oncotarget. 2018; 9:4985-4997. https://doi.org/10.18632/oncotarget.23577

Metrics: PDF 1635 views  |   HTML 2455 views  |   ?  


Steffen Hanselmann1, Patrick Wolter1, Jonas Malkmus1 and Stefan Gaubatz1

1Theodor Boveri Institute, Biocenter, University of Wuerzburg and Comprehensive Cancer Center Mainfranken, University of Wuerzburg, University of Wuerzburg, Wuerzburg, Germany

Correspondence to:

Stefan Gaubatz, email: [email protected]

Keywords: PRC1; mitotic kinesins; lung adenocarcinoma; therapeutic target

Received: August 05, 2017     Accepted: December 01, 2017     Published: December 22, 2017


In this study, we investigated whether proteins that are involved in cytokinesis are potential targets for therapy of lung cancer. We find that the microtubule-associated protein PRC1 (protein required for cytokinesis 1), which plays a key role in organizing anti-parallel microtubule in the central spindle in cytokinesis, is overexpressed in lung cancer cell lines compared to normal cells. Increased expression of PRC1 is correlated with a poor prognosis of human lung adenocarcinoma patients. Lentiviral delivered, inducible RNAi of PRC1 demonstrated that proliferation of lung cancer cell lines strongly depends on PRC1. Significantly, we also show that PRC1 is required for tumorigenesis in vivo using a mouse model for non-small cell lung cancer driven by oncogenic K-RAS and loss of p53. When PRC1 is depleted by in vivo RNA interference, lung tumor formation is significantly reduced. Although PRC1 has been suggested to regulate Wnt/ß-catenin signaling in cancer cells, we find no evidence for a role of PRC1 in this pathway in lung cancer. Instead, we show that the depletion of PRC1 results in a strong increase in bi- and multinuclear cells due to defects in cytokinesis. This ultimately leads to apoptosis and senescence. Together these data establish PRC1 as a potential target for therapy of lung cancer.

Creative Commons License All site content, except where otherwise noted, is licensed under a Creative Commons Attribution 4.0 License.
PII: 23577