Research Papers:

FoxM1 and β-catenin predicts aggressiveness in Middle Eastern ovarian cancer and their co-targeting impairs the growth of ovarian cancer cells

Poyil Pratheeshkumar, Sasidharan Padmaja Divya, Sandeep Kumar Parvathareddy, Norah M. Alhoshani, Ismail A. Al-Badawi, Asma Tulbah, Fouad Al-Dayel, Abdul K. Siraj and Khawla S. Al-Kuraya _

PDF  |  HTML  |  Supplementary Files  |  How to cite

Oncotarget. 2018; 9:3590-3604. https://doi.org/10.18632/oncotarget.23338

Metrics: PDF 1985 views  |   HTML 2015 views  |   ?  


Poyil Pratheeshkumar1,*, Sasidharan Padmaja Divya1,*, Sandeep Kumar Parvathareddy1, Norah M. Alhoshani1, Ismail A. Al-Badawi2, Asma Tulbah3, Fouad Al-Dayel3, Abdul K. Siraj1 and Khawla S. Al-Kuraya1

1Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia

2Department of Obstetrics and Gynecology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia

3Department of Pathology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia

*These authors contributed equally to this work

Correspondence to:

Khawla S. Al-Kuraya, email: [email protected]

Keywords: EOC; FoxM1; β-catenin; thiostrepton; FH535

Received: July 14, 2017     Accepted: November 26, 2017     Published: December 16, 2017


Epithelial ovarian cancer (EOC) is a highly lethal disease with poor prognosis especially in advanced stage tumor. Emerging evidence has reported that aberrant upregulation of FoxM1 and β-catenin are closely associated with aggressiveness of human cancer. However, interplay between these factors in the aggressiveness of EOC is not fully illustrated. In this study, we show that FoxM1 is frequently increased in Middle Eastern EOC and associated with high proliferative index (p = 0.0007) and high grade tumor (p = 0.0024). Interestingly, FoxM1 is significantly associated with elevated nuclear β-catenin and the concomitant increase of FoxM1 and β-catenin is associated with advanced stage of EOC by immunohistochemical analysis of 261 samples of Saudi patients with EOC. Functional analysis showed that β-catenin is a direct transcriptional target of FoxM1 in EOC cell lines. FoxM1 inhibition either by specific inhibitor, thiostrepton or siRNA suppressed β-catenin expression, whereas overexpression of FoxM1 increased nuclear β-catenin expression. We identified two FoxM1 binding sites in the β-catenin promoter that specifically bound to FoxM1 protein. Down-regulation of FoxM1 using thiostrepton induced apoptosis and inhibited cell migration/invasion in EOC cells. Moreover, co-inhibition of FoxM1 by thiostrepton and β-catenin by FH535 significantly and synergistically inhibited EOC cell growth in vitro and in vivo. Collectively, our findings confer that co-targeting FoxM1/β-catenin signaling cascade may be a promising molecular therapeutic choice in advanced EOC.

Creative Commons License All site content, except where otherwise noted, is licensed under a Creative Commons Attribution 4.0 License.
PII: 23338