Research Papers:

Digital gene expression analysis in mice lung with coinfection of influenza and streptococcus pneumoniae

Jun Luo, Linlin Zhou, Hongren Wang, Zhen Qin, Li Xiang, Jie Zhu, Xiaojun Huang, Yuan Yang, Wanyi Li, Baoning Wang and Mingyuan Li _

PDF  |  HTML  |  How to cite

Oncotarget. 2017; 8:112748-112760. https://doi.org/10.18632/oncotarget.23104

Metrics: PDF 1011 views  |   HTML 1662 views  |   ?  


Jun Luo1, Linlin Zhou1, Hongren Wang1, Zhen Qin1, Li Xiang1, Jie Zhu2, Xiaojun Huang1, Yuan Yang1, Wanyi Li1, Baoning Wang1 and Mingyuan Li1,3

1Department of Microbiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China

2Department of Microbiology, Guizhou Medical University, Guiyang 550004, China

3State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, Sichuan 610041, China

Correspondence to:

Mingyuan Li, email: [email protected]

Baoning Wang, email: [email protected]

Keywords: influenza A virus; streptococcus pneumoniae; digital gene expression; apoptosis

Received: May 02, 2017     Accepted: November 26, 2017     Published: December 11, 2017


Influenza A virus (IAV) and Streptococcus pneumoniae (SP) are two major upper respiratory tract pathogens that can also cause infection in polarized bronchial epithelial cells to exacerbate disease in coinfected individuals which may result in significant morbidity. However, the underlying molecular mechanism is poorly understood. Here, we employed BALB/c ByJ mice inflected with SP, IAV, IAV followed by SP (IAV+SP) and PBS (Control) as models to survey the global gene expression using digital gene expression (DGE) profiling. We attempt to gain insights into the underlying genetic basis of this synergy at the expression level. Gene expression profiles were obtain using the Illimina/Hisseq sequencing technique, and further analyzed by enrichment analysis of Gene Ontology (GO) and Pathway function. The hematoxylin-eosin (HE) staining revealed different tissue changes in groups during which IAV+SP group showed the most severe cell apoptosis. Compared with Control, a total of 2731, 3221 and 3946 differentially expressed genes (DEGs) were detected in SP, IAV and IAV+SP respectively. Besides, sixty-two GO terms were identified by Gene Ontology functional enrichment analysis, such as cell killing, biological regulation, response to stimulus, signaling, biological adhesion, enzyme regulator activity, receptor regulator activity and translation regulator activity. Pathway significant enrichment analysis indicated the dysregulation of multiple pathways, including apoptosis pathway. Among these, five selected genes were further verified by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). This study shows that infection with SP, IAV or IAV+SP induces apoptosis with different degrees which might provide insights into the molecular mechanisms to facilitate further research.

Creative Commons License All site content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 License.
PII: 23104