Research Papers:
Long non-coding RNA HOXA11-AS promotes the proliferation HCC cells by epigenetically silencing DUSP5
PDF | HTML | Supplementary Files | How to cite
Metrics: PDF 2076 views | HTML 2376 views | ?
Abstract
Bin Liu1,*, Jing Li2,*, Xiaoling Liu3, Min Zheng1, Ye Yang1, Qian Lyu4 and Li Jin1
1Department of Medical Oncology, Sichuan Cancer Hospital & Institute, Chengdu 610041, Sichuan Province, China
2Department of General Medicine, Sichuan Cancer Hospital & Institute, Chengdu 610041, Sichuan Province, China
3State Key Laboratory of Biotherapy, West China Medical School, Sichuan University, Chengdu 610041, Sichuan Province, China
4Department of Pathology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210000, Jiangsu Province, China
*These authors have contributed equally to this work
Correspondence to:
Li Jin, email: [email protected]
Keywords: HCC; Lnc-RNA HOXA11-AS; proliferation; EZH2; DUSP5
Received: April 21, 2017 Accepted: July 26, 2017 Published: November 27, 2017
ABSTRACT
Hepatocellular carcinoma has been identified as the fifth most common cancer in men and the ninth in women worldwide. Despite many efforts have been made in recent years, the overall survival rate of patients with hepatocellular carcinoma still remain unsatisfied. Therefore, exploring the mechanisms underlying the progression of hepatocellular carcinoma is essential for developing novel treatments to improve patient prognosis. HOXA11-AS, transcribed from the opposite strand of the protein-coding gene HOXA11, has been identified to be associated with the malignant characteristics of several cancers. However, the biological role and molecular mechanism of HOXA11-AS in hepatocellular carcinoma still need to be further investigated. In the current study, the expression of HOXA11-AS in the hepatocellular carcinoma cell lines and tissues was measured by quantitative real-time PCR. Loss-of-function and gain-of-function approaches were applied to investigate the proliferative function of HOXA11-AS in hepatocellular carcinoma cells. Results from flow cytometric analysis of apoptosis and cell cycle distribution revealed that HOXA11-AS promoted hepatocellular carcinoma cells proliferation through regulating cell cycle and apoptosis. Gene chip technology and quantitative real-time PCR confirmed that DUSP5 was a downstream target of HOXA11-AS. RNA immune co-precipitation assays, RNA pull-down and Chromatin immunoprecipitation assays confirmed that HOXA11-AS could recruit EZH2 to the promoter region of DUSP5, which therefore suppressed the transcription of DUSP5. Collectively, these findings revealed that HOXA11-AS functions as an oncogene in hepatocellular carcinoma through interacting with polycomb-repressive complex2.
All site content, except where otherwise noted, is licensed under a Creative Commons Attribution 4.0 License.
PII: 22723