Research Papers:

Thymidine phosphorylase activates NFκB and stimulates the expression of angiogenic and metastatic factors in human cancer cells

Sho Tabata _, Ryuji Ikeda, Masatatsu Yamamoto, Shunji Shimaoka, Naofumi Mukaida, Yasuo Takeda, Katsushi Yamada, Tomoyoshi Soga, Tatsuhiko Furukawa and Shin-ichi Akiyama

PDF  |  HTML  |  Supplementary Files  |  How to cite

Oncotarget. 2014; 5:10473-10485. https://doi.org/10.18632/oncotarget.2242

Metrics: PDF 1995 views  |   HTML 2299 views  |   ?  


Sho Tabata1, Ryuji Ikeda2, Masatatsu Yamamoto3, Shunji Shimaoka4, Naofumi Mukaida5, Yasuo Takeda2, Katsushi Yamada6, Tomoyoshi Soga1, Tatsuhiko Furukawa3, Shin-ichi Akiyama7

1Institute for Advanced Biosciences, Keio University, Kakuganji, Tsuruoka, Yamagata 997-0052, Japan

2Department of Clinical Pharmacy and Pharmacology, Graduate School Medical and Dental Science, Kagoshima University, Kagoshima 890-8544, Japan

3Department of Molecular Oncology, Graduate School Medical and Dental Science, Kagoshima University, Kagoshima 890-8544, Japan

4Department of Gastroenterology, Nanpuh Hospital, Kagoshima 892-0854, Japan

5Department of Molecular Oncology, Cancer Research Institute, Kanazawa University, Kanazawa 920-0934, Japan

6Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Nagasaki International University, Sasebo, Nagasaki 859-3298, Japan

7Clinical Research Center, National Kyushu Cancer Center, Notame Minami-ku, Fukuoka 811-1395, Japan

Correspondence to:

Tatsuhiko Furukawa, e-mail: [email protected]

Shin-ichi Akiyama, e-mail: [email protected]

Keywords: thymidine phosphorylase, IL-8, ROS, NFκB

Received: May 20, 2014     Accepted: July 23, 2014     Published: December 01, 2014


Thymidine phosphorylase (TP) promotes angiogenesis and metastasis, and confers resistance to anticancer agents in some cancer cell types. We previously reported that TP stimulates the expression of interleukin (IL)-8 in human KB cancer cells by an unknown mechanism. A mutation in the nuclear factor (NF)κB binding site of the IL-8 promoter suppressed promoter activity in KB/TP cells that overexpress TP. Specifically inhibiting NFκB by using BY11-7082 also suppressed TP-induced IL-8 promoter activity and IL-8 expression. Moreover, TP overexpression led to the activation of NFκB and an upregulation in the expression of its target genes, and increased phosphorylated IKKα/β protein levels, while promoting IκBα degradation as well as p65 phosphorylation and nuclear localization. The activation of NFκB in KB/TP cells was suppressed by the antioxidants N-acetylcysteine and EUK-8. In addition, in gastric cancer tissue samples, the expression of the NFκB-regulated genes, including IL-8, IL-6, and fibronectin-1 was positively correlated with TP expression. These findings indicate that reactive oxygen species mediated NFκB activation by TP increases the expression of genes that promote angiogenesis and metastasis in gastric cancer.

Creative Commons License All site content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 License.
PII: 2242