Research Papers:

Proteogenomic analysis prioritises functional single nucleotide variants in cancer samples

Shiyong Ma, Ranjeeta Menon, Rebecca C. Poulos and Jason W.H. Wong _

PDF  |  HTML  |  Supplementary Files  |  How to cite

Oncotarget. 2017; 8:95841-95852. https://doi.org/10.18632/oncotarget.21339

Metrics: PDF 1668 views  |   HTML 3203 views  |   ?  


Shiyong Ma1, Ranjeeta Menon1,2, Rebecca C. Poulos1 and Jason W.H. Wong1

1Prince of Wales Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia

2Present address: Centre for Research Excellence in Tuberculosis and the Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney and Centre for Infectious Diseases and Microbiology – Public Health, Westmead Hospital, Sydney, NSW, Australia

Correspondence to:

Jason W.H. Wong, email: [email protected]

Keywords: Proteogenomics; phosphoproteomics; RNA-seq; Jurkat; splicing factor mutation

Received: March 03, 2017    Accepted: July 12, 2017    Published: September 27, 2017


Massively parallel DNA sequencing enables the detection of thousands of germline and somatic single nucleotide variants (SNVs) in cancer samples. The functional analysis of these mutations is often carried out through in silico predictions, with further downstream experimental validation rarely performed. Here, we examine the potential of using mass spectrometry-based proteomics data to further annotate the function of SNVs in cancer samples. RNA-seq and whole genome sequencing (WGS) data from Jurkat cells were used to construct a custom database of single amino acid variant (SAAV) containing peptides and identified over 1,000 such peptides in two Jurkat proteomics datasets. The analysis enabled the detection of a truncated form of splicing regulator YTHDC1 at the protein level. To extend the functional annotation further, a Jurkat phosphoproteomics dataset was analysed, identifying 463 SAAV containing phosphopeptides. Of these phosphopeptides, 24 SAAVs were found to directly impact the phosphorylation event through the creation of either a phosphorylation site or a kinase recognition motif. We identified a novel phosphorylation site created by a SAAV in splicing factor SF3B1, a protein that is frequently mutated in leukaemia. To our knowledge, this is the first study to use phosphoproteomics data to directly identify novel phosphorylation events arising from the creation of phosphorylation sites by SAAVs. Our study reveals multiple functional mutations impacting the splicing pathway in Jurkat cells and demonstrates potential benefits of an integrative proteogenomics analysis for high-throughput functional annotation of SNVs in cancer.

Creative Commons License All site content, except where otherwise noted, is licensed under a Creative Commons Attribution 4.0 License.
PII: 21339