Research Papers:

MicroRNA-182 targets protein phosphatase 1 regulatory inhibitor subunit 1C in glioblastoma

Liqiang Liu _, Xiaowei Zhang, Chengrui Nan, Zongmao Zhao, Shucheng Ma, Wenhua Li, Hongchao Hu and Zaohui Liang

PDF  |  HTML  |  How to cite

Oncotarget. 2017; 8:114677-114684. https://doi.org/10.18632/oncotarget.21309

Metrics: PDF 1822 views  |   HTML 2660 views  |   ?  


Liqiang Liu1, Xiaowei Zhang1, Chengrui Nan1, Zongmao Zhao1, Shucheng Ma1, Wenhua Li2, Hongchao Hu1 and Zhaohui Liang1

1Neurosurgical Department, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China

2Neurosurgical Department, Dongying People’s Hospital of Shandong Province, Dongying, Shandong, China

Correspondence to:

Liqiang Liu, email: [email protected]

Keywords: MicroRNA-182; glioblastoma; PPP1R1C; protein phosphatase 1 regulatory inhibitor subunit 1C

Received: October 27, 2016     Accepted: August 06, 2017     Published: September 27, 2017


Glioblastoma (GBM) is an incurable cancer, with mean post-diagnosis survival time of 14-16 months. Metagenomic analysis by The Cancer Genome Atlas (TCGA) program has identified microRNA-182-5p (miR-182-5p or miR-182) as the only miRNA associated with favorable disease prognosis and temozolomide (TMZ) susceptibility. Previous reports have indicated that miR-182 down regulates expression of BCL2L12, c-MET, and HIF2A. However, other messenger RNA (mRNA) targets of miR-182 have not been validated which would explain its association with a favorable disease prognosis. In situ analysis revealed that protein phosphatase 1 regulatory inhibitor subunit 1C (PPP1R1C) is a putative target of miR-182. PPP1R1C protein and RNA expression as assessed by tissue microarray and quantitative real time PCR, respectively, was inversely correlated to miR-182 expression in glioblastoma patients and in the metastatic glioblastoma cell line U87-MG. Reporter assays using PPP1R1C 3’ untranslated region (UTR) showed that miR-182 can interact with the wild-type but not a miR-182-5-seed mutant. Ectopic expression of miR-182 mimic in the U87-MG cell line significantly decreased proliferation as well as suppressed in vitro migration and invasion. Opposite observations were made when the non-malignant neuronal cell line HCN-2 was transfected with anti-miR-182 antagomir. The miR-182 mimic or siRNA targeting PPP1R1C induced TMZ susceptibility indicating that decreased susceptibility to TMZ in GBM patients might be attributed to high expression of PPP1R1C. Inverse correlation of PPP1R1C mRNA and miR-182 levels in 20 GBM patients confirmed the same. Cumulatively, our results indicate that loss of miR-182 leads to increased expression of PPP1R1C which in part explain disease progression and resistance to TMZ therapy.

Creative Commons License All site content, except where otherwise noted, is licensed under a Creative Commons Attribution 4.0 License.
PII: 21309