Oncotarget

Research Papers:

Homologous recombination repair is essential for repair of vosaroxin-induced DNA double-strand breaks

Rachael Elizabeth Hawtin, David Elliot Stockett, Oi Kwan Wong, Cecilia Lundin, Thomas Helleday and Judith Ann Fox _

PDF  |  HTML  |  Supplementary Files  |  How to cite  |  Order a Reprint

Oncotarget. 2010; 1:606-619. https://doi.org/10.18632/oncotarget.195

Metrics: PDF 2623 views  |   HTML 3256 views  |   ?  


Abstract

Received: October 29, 2010, Accepted: November 22, 2010, Published: November 22, 2010

Vosaroxin (formerly voreloxin) is a first-in-class anticancer quinolone derivative that intercalates DNA and inhibits topoisomerase II, inducing site-selective double-strand breaks (DSB), G2 arrest and apoptosis. Objective responses and complete remissions were observed in phase 2 studies of vosaroxin in patients with solid and hematologic malignancies, and responses were seen in patients whose cancers were resistant to anthracyclines. The quinolone-based scaffold differentiates vosaroxin from the anthracyclines and anthracenediones, broadly used DNA intercalating topoisomerase II poisons. Here we report that vosaroxin induces a cell cycle specific pattern of DNA damage and repair that is distinct from the anthracycline, doxorubicin. Both drugs stall replication and preferentially induce DNA damage in replicating cells, with damage in G2 / M > S >> G1. However, detectable replication fork collapse, as evidenced by DNA fragmentation and long tract recombination during S phase, is induced only by doxorubicin. Furthermore, vosaroxin induces less overall DNA fragmentation. Homologous recombination repair (HRR) is critical for recovery from DNA damage induced by both agents, identifying the potential to clinically exploit synthetic lethality.

 


Creative Commons License All site content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 License.
PII: 195