Research Papers:

Overexpression of the E2F target gene CENPI promotes chromosome instability and predicts poor prognosis in estrogen receptor-positive breast cancer

Pulari U. Thangavelu, Cheng-Yu Lin, Srividya Vaidyanathan, Thu H.M. Nguyen, Eloise Dray and Pascal H.G. Duijf _

PDF  |  HTML  |  How to cite

Oncotarget. 2017; 8:62167-62182. https://doi.org/10.18632/oncotarget.19131

Metrics: PDF 1789 views  |   HTML 4399 views  |   ?  


Pulari U. Thangavelu1, Cheng-Yu Lin1, Srividya Vaidyanathan1, Thu H.M. Nguyen1, Eloise Dray2 and Pascal H.G. Duijf1

1University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia

2Institute of Health and Biomedical Innovation, Queensland University of Technology, Translational Research Institute, Brisbane, QLD, Australia

Correspondence to:

Pascal H.G. Duijf, email: [email protected]

Keywords: breast cancer, prognosis, chromosome instability, aneuploidy, CENPI

Received: August 26, 2016    Accepted: June 03, 2017    Published: July 10, 2017


During cell division, chromosome segregation is facilitated by the mitotic checkpoint, or spindle assembly checkpoint (SAC), which ensures correct kinetochore-microtubule attachments and prevents premature sister-chromatid separation. It is well established that misexpression of SAC components on the outer kinetochores promotes chromosome instability (CIN) and tumorigenesis. Here, we study the expression of CENP-I, a key component of the HIKM complex at the inner kinetochores, in breast cancer, including ductal, lobular, medullary and male breast carcinomas. CENPI mRNA and protein levels are significantly elevated in estrogen receptor-positive (ER+) but not in estrogen receptor-negative (ER-) breast carcinoma. Well-established prognostic tests indicate that CENPI overexpression constitutes a powerful independent marker for poor patient prognosis and survival in ER+ breast cancer. We further demonstrate that CENPI is an E2F target gene. Consistently, it is overexpressed in RB1-deficient breast cancers. However, CENP-I overexpression is not purely due to cell cycle-associated expression. In ER+ breast cancer cells, CENP-I overexpression promotes CIN, especially chromosome gains. In addition, in ER+ breast carcinomas the degree of CENPI overexpression is proportional to the level of aneuploidy and CENPI overexpression is one of the strongest markers for CIN identified to date. Our results indicate that overexpression of the inner kinetochore protein CENP-I promotes CIN and forecasts poor prognosis for ER+ breast cancer patients. These observations provide novel mechanistic insights and have important implications for breast cancer diagnostics and potentially therapeutic targeting.

Creative Commons License All site content, except where otherwise noted, is licensed under a Creative Commons Attribution 4.0 License.
PII: 19131