Oncotarget

Research Papers:

Identifying mitotane-induced mitochondria-associated membranes dysfunctions: metabolomic and lipidomic approaches

Ségolène Hescot, Larbi Amazit, Marie Lhomme, Simon Travers, Anais DuBow, Stephanie Battini, Geoffrey Boulate, Izzie Jacques Namer, Anne Lombes, Anatol Kontush, Alessio Imperiale, Eric Baudin and Marc Lombes _

PDF  |  HTML  |  Supplementary Files  |  How to cite  |  Order a Reprint

Oncotarget. 2017; 8:109924-109940. https://doi.org/10.18632/oncotarget.18968

Metrics: PDF 924 views  |   HTML 1861 views  |   ?  


Abstract

Ségolène Hescot1,2, Larbi Amazit1,3, Marie Lhomme4, Simon Travers1, Anais DuBow1, Stephanie Battini5, Geoffrey Boulate1, Izzie Jacques Namer5,6, Anne Lombes7, Anatol Kontush4,8, Alessio Imperiale5,6, Eric Baudin1,2 and Marc Lombes1,9

1INSERM UMR-S 1185, Le Kremlin-Bicêtre, France

2Endocrine Oncology, Gustave Roussy, Villejuif, France

3Institut Biomédical de Bicêtre, UMS-32, Le Kremlin Bicêtre, France

4ICANalytics, UMR-ICAN 116, University Pierre et Marie Curie, Paris, France

5ICube, UMR 7357, University of Strasbourg/CNRS and FMTS, Faculty of Medicine, Strasbourg, France

6Biophysics and Nuclear Medicine, University Hospital of Strasbourg, Strasbourg, France

7INSERM UMRS 1016, Institut Cochin, Paris, France

8Assistance Publique, Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpétrière, Paris, France

9Assistance Publique, Hopitaux de Paris, Hopital Bicêtre, Department of Endocrinology, Le Kremlin-Bicêtre, France

Correspondence to:

Marc Lombes, email: marc.lombes@u-psud.fr

Keywords: adrenocortical carcinoma, mitotane, mitochondria-associated membranes, molecular target, lipidomics

Received: November 14, 2016     Accepted: June 18, 2017     Published: July 04, 2017

ABSTRACT

Mitotane (o,p’DDD), the most effective drug in adrenocortical carcinoma, concentrates into the mitochondria and impacts mitochondrial functions. To address the molecular mechanisms of mitotane action and to identify its potential target, metabolomic and lipidomic approaches as well as imaging analyses were employed in human adrenocortical H295R cells allowing identification of Mitochondria-Associated Membranes dysfunction as a critical impact of mitotane. Study of intracellular energetic metabolites by NMR spectroscopy showed that mitotane significantly decreased aspartate while concomitantly increased glutamate content in a time- and concentration-dependent manner. Such alterations were very likely linked to the previously described, mitotane-induced respiratory chain defect. Lipidomic studies of intracellular and intramitochondrial phospholipids revealed that mitotane exposure markedly reduced the phosphatidylserine/phosphatidylethanolamine ratio, indicative of a dysfunction of phosphatidylserine decarboxylase located in Mitochondria-Associated Membranes. Expression levels of Mitochondria-Associated Membranes proteins phosphatidylserine decarboxylase, DRP1, ATAD3A or TSPO were greatly reduced by mitotane as assessed by western blot analyses. Mitotane exposure markedly altered endogenous Mitochondria-Associated Membranes integrity and reduced the magnitude of mitochondria and the endoplasmic reticulum interactions as demonstrated by high resolution deconvolution microscopy and quantification. Finally, we showed that PK11195, a pharmacological inhibitor of the cholesterol translocator TSPO, embedded in Mitochondria-Associated Membranes, exerts a synergetic effect with mitotane in inducing Mitochondria-Associated Membranes disruption, apoptosis and in inhibiting steroid secretion. Altogether, our results demonstrate Mitochondria-Associated Membranes dysfunction in H295R cells treated with mitotane and that TSPO inhibition significantly potentiates mitotane antitumoral and antisecretory actions in vitro. This constitutes a potential and promising pharmacological strategy for patients with adrenocortical carcinoma.


Creative Commons License All site content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 License.
PII: 18968