Research Papers:

Genome-wide functional analysis on the molecular mechanism of specifically biosynthesized fluorescence Eu complex

Jing Ye, Xiawei Dong, Xuerui Jiang, Hui Jiang, Chen-Zhong Li and Xuemei Wang _

PDF  |  HTML  |  Supplementary Files  |  How to cite

Oncotarget. 2017; 8:72082-72095. https://doi.org/10.18632/oncotarget.18914

Metrics: PDF 1824 views  |   HTML 2213 views  |   ?  


Jing Ye1, Xiawei Dong1, Xuerui Jiang1, Hui Jiang1, Chen-Zhong Li2 and Xuemei Wang1

1School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China

2Nanobioengineering/Bioelectronics Lab, Department of Biomedical Engineering, Florida International University, Miami, FL 33174, USA

Correspondence to:

Xuemei Wang, email: [email protected]

Keywords: molecular mechanisms, fluorescent Eu complex, GO analysis, KEGG pathway, whole-genome expression profiles

Received: May 08, 2016     Accepted: June 18, 2017     Published: July 01, 2017


Fluorescence imaging as an attractive diagnostic technique is widely employed for early diagnosis of cancer. Self-biosynthesized fluorescent Eu complex in situ in Hela cells have realized specifically and accurately fluorescence imaging for cancer cells. But the molecular mechanism of the in situ biosynthesized process is still unclear. In order to reveal this mechanism, we have investigated whole-genome expression profiles with cDNA microarray, incubated with Eu solution in Hela cells for 24 h. Methylthiazoltetrazolium (MTT) assay and laser confocal fluorescence microscopy study showed the low cytotoxicity and specifically fluorescence imaging of Eu complex in Hela cells. It is observed that 563 up-regulated genes and 274 down-regulated genes were differentially expressed. Meanwhile, quantitative RT-PCR was utilized to measure the expression of some important genes, which validated the results of microarray data analysis. Besides, GO analysis showed that a wide range of differential expression functional genes involved in three groups, including cellular component, molecular function and cellular biological process. It was evident that some important biological pathways were apparently affected through KEGG pathway analysis, including focal adhesion pathway and PI3K (phosphatidylinositol 3' -kinase)-Akt signaling pathway, which can influence glycolytic metabolism and NAD(P)H-oxidases metabolic pathway.

Creative Commons License All site content, except where otherwise noted, is licensed under a Creative Commons Attribution 4.0 License.
PII: 18914