Research Papers:

The generation and functional characterization of induced pluripotent stem cells from human intervertebral disc nucleus pulposus cells

Yanxia Zhu _, Yuhong Liang, Hongxia Zhu, Cuihong Lian, Liang Wang, Yiwei Wang, Hongsheng Gu, Guangqian Zhou and Xiaoping Yu

PDF  |  HTML  |  How to cite

Oncotarget. 2017; 8:42700-42711. https://doi.org/10.18632/oncotarget.17446

Metrics: PDF 1831 views  |   HTML 3291 views  |   ?  


Yanxia Zhu1, Yuhong Liang1, Hongxia Zhu2, Cuihong Lian1, Liang Wang1, Yiwei Wang3, Hongsheng Gu4, Guangqian Zhou1 and Xiaoping Yu4

1Shenzhen Key Laboratory for Anti-Aging and Regenerative Medicine, Health Science Center, Shenzhen University, Shenzhen, 518060, China

2Department of Spinal Surgery, Xiaogan Maternity and Child Healthcare Hospital, Xiaogan, 432100, China

3Burns Research Group, ANZAC Research Institute, University of Sydney, Concord, NSW, 2139, Australia

4Department of Spinal Surgery, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518060, China

Correspondence to:

Yanxia Zhu, email: [email protected]

Xiaoping Yu, email: [email protected]

Keywords: disc degenerative disease, nucleus pulposus, induced pluripotent stem cell, reprogram, differentiation

Received: March 12, 2017     Accepted: April 12, 2017     Published: April 26, 2017


Disc degenerative disease (DDD) is believed to originate in the nucleus pulposus (NP) region therefore, it is important to obtain a greater number of active NP cells for the study and therapy of DDD. Human induced pluripotent stem cells (iPSCs) are a powerful tool for modeling the development of DDD in humans, and have the potential to be applied in regenerative medicine. NP cells were isolated from DDD patients following our improved method, and then the primary NP cells were reprogramed into iPSCs with Sendai virus vectors encoding 4 factors. Successful reprogramming of iPSCs was verified by the expression of surface markers and presence of teratoma. Differentiation of iPSCs into NP-like cells was performed in a culture plate or in hydrogel, whereby skin fibroblast derived-iPSCs were used as a control. Results demonstrated that iPSCs derived from NP cells displayed a normal karyotype, expressed pluripotency markers, and formed teratoma in nude mice. NP induction of iPSCs resulted in the expression of NP cell specific matrix proteins and related genes. Non-induced NP derived-iPSCs also showed some NP-like phenotype. Furthermore, NP-derived iPSCs differentiate much better in hydrogel than that in a culture plate. This is a novel method for the generation of iPSCs from NP cells of DDD patients, and we have successfully differentiated these iPSCs into NP-like cells in hydrogel. This method provides a novel treatment of DDD by using patient-specific NP cells in a relatively simple and straightforward manner.

Creative Commons License All site content, except where otherwise noted, is licensed under a Creative Commons Attribution 4.0 License.
PII: 17446