Research Papers:

Intraoperative contrast-enhanced ultrasonography for microcirculatory evaluation in rhesus monkey with spinal cord injury

Lin Huang, Keng Chen, Fu-Chao Chen, Hui-Yong Shen, Ji-Chao Ye, Zhao-Peng Cai and Xi Lin _

PDF  |  HTML  |  How to cite

Oncotarget. 2017; 8:40756-40764. https://doi.org/10.18632/oncotarget.17252

Metrics: PDF 1670 views  |   HTML 2310 views  |   ?  


Lin Huang1,*, Keng Chen1,*, Fu-Chao Chen1, Hui-Yong Shen1, Ji-Chao Ye1, Zhao-Peng Cai1 and Xi Lin2

1Department of Orthopedics, Memorial Hospital of Sun Yat-Sen University, Institute of Spinal Cord Injury, Sun Yat-Sen University, Guangzhou, Guangdong Province, 510120, P.R. China

2Department of Ultrasound, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong Province, 510060, P.R. China

*These authors contributed equally to this work

Correspondence to:

Xi Lin, email: [email protected]

Zhao-Peng Cai, email: [email protected]

Keywords: spinal cord, contusion, perfusion, rhesus monkey, contrast-enhanced ultrasound

Received: January 23, 2017     Accepted: April 03, 2017     Published: April 19, 2017


This study tried to quantify spinal cord perfusion by using contrast-enhanced ultrasound (CEUS) in rhesus monkey models with acute spinal cord injury. Acute spinal cord perfusion after injury was detected by CEUS, coupling with conventional ultrasound (US) and Color Doppler US (CDFI). Time-intensity curves and perfusion parameters were obtained by autotracking contrast quantification (ACQ) software in the epicenter and adjacent regions of injury, respectively. Neurological and histological examinations were performed to confirm the severity of injury. US revealed spinal cords were hypoechoic and homogeneous, whereas dura maters, pia maters, and cerebral aqueducts were hyperechoic. After spinal cord contusion, the injured spinal cord was hyperechoic on US, and intramedullary vessels of adjacent region of injury were increased and dilated on CDFI. On CEUS hypoperfusion were found in the epicenter of injury, while hyperperfusion in its adjacent region. Quantitative analysis showed that peak intensity (PI) decreased in epicenters of injury but significantly increased in adjacent regions at all time points (p < 0.05). Functional evaluation demonstrated significant deterioration compared to pre-contusion (p < 0.05). Quantitative analysis with CEUS is a promising method for monitoring perfusion changes of spinal cord injury in overall views and real-time.

Creative Commons License All site content, except where otherwise noted, is licensed under a Creative Commons Attribution 4.0 License.
PII: 17252