Oncotarget

Research Papers:

Lysosomal accumulation of anticancer drugs triggers lysosomal exocytosis

Benny Zhitomirsky and Yehuda G. Assaraf _

PDF  |  HTML  |  How to cite

Oncotarget. 2017; 8:45117-45132. https://doi.org/10.18632/oncotarget.15155

Metrics: PDF 3986 views  |   HTML 6685 views  |   ?  


Abstract

Benny Zhitomirsky1, Yehuda G. Assaraf1

1The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel

Correspondence to:

Yehuda G. Assaraf, email: [email protected]

Keywords: chemotherapeutics, multidrug resistance, lysosomes, drug sequestration, lysosomal exocytosis

Received: November 08, 2016     Accepted: January 24, 2017     Published: February 07, 2017

ABSTRACT

We have recently shown that hydrophobic weak base anticancer drugs are highly sequestered in acidic lysosomes, inducing TFEB-mediated lysosomal biogenesis and markedly increased lysosome numbers per cell. This enhanced lysosomal sequestration of chemotherapeutics, away from their intracellular targets, provoked cancer multidrug resistance. However, little is known regarding the fate of lysosome-sequestered drugs. While we suggested that sequestered drugs might be expelled from cancer cells via lysosomal exocytosis, no actual drug-induced lysosomal exocytosis was demonstrated. By following the subcellular localization of lysosomes during exposure to lysosomotropic chemotherapeutics, we herein demonstrate that lysosomal drug accumulation results in translocation of lysosomes from the perinuclear zone towards the plasma membrane via movement on microtubule tracks. Furthermore, following translocation to the plasma membrane in drug-treated cells, lysosomes fused with the plasma membrane and released their cargo to the extracellular milieu, as also evidenced by increased levels of the lysosomal enzyme cathepsin D in the extracellular milieu. These findings suggest that lysosomal exocytosis of chemotherapeutic drug-loaded lysosomes is a crucial component of lysosome-mediated cancer multidrug resistance. We further argue that drug-induced lysosomal exocytosis bears important implications on tumor progression, as several lysosomal enzymes were found to play a key role in tumor cell invasion, angiogenesis and metastasis.


Creative Commons License All site content, except where otherwise noted, is licensed under a Creative Commons Attribution 4.0 License.
PII: 15155