Research Papers:

The long noncoding RNA HOXA11 antisense induces tumor progression and stemness maintenance in cervical cancer

Hee Jung Kim, Kyung Jin Eoh, Lee Kyung Kim, Eun Ji Nam, Sun Och Yoon, Kun-Hong Kim, Jae Kwan Lee, Sang Wun Kim _ and Young Tae Kim

PDF  |  HTML  |  Supplementary Files  |  How to cite

Oncotarget. 2016; 7:83001-83016. https://doi.org/10.18632/oncotarget.12863

Metrics: PDF 2112 views  |   HTML 2551 views  |   ?  


Hee Jung Kim1,*, Kyung Jin Eoh1,2,*, Lee Kyung Kim1, Eun Ji Nam1, Sun Och Yoon3, Kun-Hong Kim4, Jae Kwan Lee5, Sang Wun Kim1, Young Tae Kim1

1Institute of Women's Life Medical Science, Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul, Korea

2Department of Obstetrics and Gynecology, Yonsei University Graduate School, Seoul, Korea

3Department of Pathology, Gangnam Severance Cancer Hospital, Yonsei University College of Medicine, Seoul, Korea

4Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, Korea

5Department of Obstetrics and Gynecology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea

*These authors have contributed equally to this work

Correspondence to:

Sang Wun Kim, email: [email protected]

Young Tae Kim, email: [email protected]

Keywords: HOXA11 antisense, long noncoding RNA, invasion, prognosis, cervical cancer

Received: August 08, 2016    Accepted: October 14, 2016    Published: October 25, 2016


Recent research has focused on the impact of long noncoding RNA (lncRNA) in cervical carcinogenesis. However, whether HOXA11 antisense (HOXA11-AS) is involved in cervical cancer remains to be elucidated. In the present study, we examined HOXA11-AS expression levels in cervical cancer patients and determined the relationships between HOXA11-AS expression and clinicopathological factors. We also investigated the bio-functional consequences of HOXA11-AS overexpression both in vitro and in vivo. HOXA11-AS expression was significantly greater in tissues from patients with cervical cancer than in control patients (P<0.001). Multivariate analysis showed that high HOXA11-AS was an independent prognosticator of overall survival (Hazard ratio=2.450, P=0.032). HOXA11-AS overexpression enhanced cell proliferation, migration, and tumor invasion in vitro, whereas HOXA11-AS knockdown inhibited these biologic aggressive features. These adverse changes were accompanied by characteristics of epithelial-mesenchymal transition (EMT). In vivo xenograft experiments using the siHOXA11-AS-transfected HeLa cells revealed that HOXA11-AS strongly induced tumor growth. Furthermore, we found that HOXA11-AS knockdown decreased cancer stemness and triggered the EMT program. In conclusion, HOXA11-AS overexpression correlated with poor survival in patients with cervical cancer. Thus, HOXA11-AS may be a pivotal target for exploring novel cervical cancer therapeutics.

Creative Commons License All site content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 License.
PII: 12863