Oncotarget

Research Papers:

Elevated level of acetylation of APE1 in tumor cells modulates DNA damage repair

Shiladitya Sengupta, Anil K. Mantha, Heyu Song, Shrabasti Roychoudhury, Somsubhra Nath, Sutapa Ray and Kishor K. Bhakat _

PDF  |  HTML  |  Supplementary Files  |  How to cite  |  Order a Reprint

Oncotarget. 2016; 7:75197-75209. https://doi.org/10.18632/oncotarget.12113

Metrics: PDF 1020 views  |   HTML 1949 views  |   ?  


Abstract

Shiladitya Sengupta1,4, Anil K. Mantha1,5, Heyu Song2, Shrabasti Roychoudhury2, Somsubhra Nath2,6, Sutapa Ray3, Kishor K. Bhakat1,2

1Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA

2Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA

3Department of Pediatrics, Hematology/Oncology Division, University of Nebraska Medical Center, Omaha, NE 68198, USA

4Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA

5Center for Animal Sciences, School of Basic and Applied Sciences, Central University of Punjab, Bathinda 151001, Punjab, India

6Molecular Biology Research & Diagnostic Laboratory, Saroj Gupta Cancer Centre & Research Institute, Kolkata 700063, India

Correspondence to:

Kishor K. Bhakat, email: kishor.bhakat@unmc.edu

Keywords: apurinic/apyrimidinic endonuclease 1 (APE1), BER, acetylation, DNA damage repair

Received: April 13, 2016    Accepted: September 02, 2016    Published: September 19, 2016

ABSTRACT

Apurinic/apyrimidinic (AP) sites are frequently generated in the genome by spontaneous depurination/depyrimidination or after removal of oxidized/modified bases by DNA glycosylases during the base excision repair (BER) pathway. Unrepaired AP sites are mutagenic and block DNA replication and transcription. The primary enzyme to repair AP sites in mammalian cells is AP endonuclease (APE1), which plays a key role in this repair pathway. Although overexpression of APE1 in diverse cancer types and its association with chemotherapeutic resistance are well documented, alteration of posttranslational modification of APE1 and modulation of its functions during tumorigenesis are largely unknown. Here, we show that both classical histone deacetylase HDAC1 and NAD+-dependent deacetylase SIRT1 regulate acetylation level of APE1 and acetylation of APE1 enhances its AP-endonuclease activity both in vitro and in cells. Modulation of APE1 acetylation level in cells alters AP site repair capacity of the cell extracts in vitro. Primary tumor tissues of diverse cancer types have higher level of acetylated APE1 (AcAPE1) compared to adjacent non-tumor tissue and exhibit enhanced AP site repair capacity. Importantly, in the absence of APE1 acetylation, cells accumulate AP sites in the genome and show increased sensitivity to DNA damaging agents. Together, our study demonstrates that elevation of acetylation level of APE1 in tumor could be a novel mechanism by which cells handle the elevated levels of DNA damages in response to genotoxic stress and maintain sustained proliferation.


Creative Commons License All site content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 License.
PII: 12113