Research Papers:
Adenosine A3 receptor elicits chemoresistance mediated by multiple resistance-associated protein-1 in human glioblastoma stem-like cells
PDF | HTML | Supplementary Files | How to cite
Metrics: PDF 2272 views | HTML 3560 views | ?
Abstract
Angelo Torres1, Yosselyn Vargas1, Daniel Uribe1, Catherine Jaramillo1, Alejandra Gleisner2, Flavio Salazar-Onfray2, Mercedes N. López2, Rómulo Melo3, Carlos Oyarzún1, Rody San Martín1, Claudia Quezada1
1Laboratorio de Patología Molecular, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
2Instituto Milenio de Inmunología e Inmunoterapia, Facultad de Medicina, Universidad de Chile, Santiago, Chile
3Servicio de Neurocirugía, Instituto de Neurocirugía Dr. Asenjo, Santiago, Chile
Correspondence to:
Claudia Quezada, email: [email protected]
Keywords: adenosine receptors, ATP-binding cassette (ABC) transporter superfamily, glioblastoma stem-like cells, multiple drug resistance
Received: February 18, 2016 Accepted: August 29, 2016 Published: September 15, 2016
ABSTRACT
MRP1 transporter correlates positively with glioma malignancy and the Multiple Drug Resistance (MDR) phenotype in Glioblastoma Multiforme (GBM). Evidence shows that the MRP1 transporter is controlled by the adenosine signalling axis. The aim of this study was to identify the role of adenosine on the MDR phenotype in Glioblastoma Stem-like Cells (GSCs), the cell population responsible for the tumorigenic and chemoresistance capabilities of this tumour. We found that GSCs have increased intrinsic capacity to generate extracellular adenosine, thus controlling MRP1 transporter expression and activity via activation of the adenosine A3 receptor (A3AR). We showed PI3K/Akt and MEK/ERK1/2 signaling pathways downstream A3AR to control MRP1 in GSCs. In vitro pharmacological blockade of A3AR had a chemosensitizing effect, enhancing the actions of antitumour drugs and decreasing cell viability and proliferation of GSCs. In addition, we produced an in vivo xenograft model by subcutaneous inoculation of human GSCs in NOD/SCID-IL2Rg null mice. Pharmacological blockade of A3AR generated a chemosensitizing effect, enhancing the effectiveness of the MRP1 transporter substrate, vincristine, reducing tumour size and the levels of CD44 and Nestin stem cell markers as well as the Ki-67 proliferation indicator. In conclusion, we demonstrated the chemosensitizing effect of A3AR blockade on GSCs.
All site content, except where otherwise noted, is licensed under a Creative Commons Attribution 4.0 License.
PII: 12033